Menu

Blog

Archive for the ‘quantum physics’ category: Page 199

Jul 14, 2023

A ‘Frustration Machine’ Found a Brand-New Phase of Matter

Posted by in category: quantum physics

As scientists explore the quantum world, the known number of phases of matter continues to grow. The newest addition to the list is a chiral bose-liquid state.

Jul 14, 2023

Team unveils new path for dense photonic integration

Posted by in categories: computing, quantum physics

Integrated optical semiconductor (hereinafter referred to as optical semiconductor) technology is a next-generation technology for which many researches and investments are being made worldwide because it can make complex optical systems such as LiDAR and quantum sensors and computers into a single small chip.

In existing , the goal was to achieve units of 5 or 2 nanometers, but increasing the degree of integration in optical semiconductor devices can be said to be a key technology that determines performance, price, and .

A research team led by Professor Sangsik Kim of the Department of Electrical and Electronic Engineering discovered a new optical coupling mechanism that can increase the degree of integration of optical semiconductor devices by more than 100 times.

Jul 14, 2023

Extreme measuring device can bring quantum technology to your smartphone

Posted by in categories: biotech/medical, mobile phones, quantum physics

University of Copenhagen researchers have invented a “quantum drum” that can measure pressure, a gas leak, heat, magnetism and a host of other things with extreme precision. It can even scan the shape of a single virus. The invention has now been adapted to work at room temperature and may be finding its way into our phones.

Humans have tried to measure the world around them since ancient times. Now, researchers are using the laws of quantum physics to develop one of the most sensitive measuring devices the world has ever seen. One day, it may even be yours. With two innovative solutions, researchers at the Niels Bohr Institute have found a way to get quantum technology into our pockets.

The heart of the apparatus could be called a “quantum drum”: It is a that vibrates like a drum skin, but with so small an amplitude that the laws of quantum physics are needed to describe what’s happening. In other words, it’s vibrating really fast. This means the drum can be used as an ultra-precise measuring device—a quantum supersensor.

Jul 14, 2023

Eureka! Scientists explore mysteries of black holes with hi-tech bathtub

Posted by in categories: cosmology, quantum physics

But in black holes, where a lot of mass is crammed into a very small region of space, these worlds collide and there is no theoretical framework that unifies the two.

“We have a great understanding of both individually, but it turns out extremely hard to combine these two theories,” says Weinfurtner. “The idea is that we want to understand how quantum physics behaves, on what we call a curved space time geometry.”

In the new setup, the black hole is represented by a tiny vortex inside a bell jar of superfluid helium, cooled to-271C. At this temperature, helium begins to demonstrate quantum effects. Unlike water, which can spin at a continuous range of speeds, the helium vortex can only swirl at certain fixed values. Ripples sent across the surface of the helium, tracked with nanometre precision by lasers and a high-resolution camera, represent radiation approaching a black hole.

Jul 14, 2023

Mindscape 236 | Thomas Hertog on Quantum Cosmology and Hawking’s Final Theory

Posted by in categories: cosmology, quantum physics

Patreon: https://www.patreon.com/seanmcarroll.
Blog post with audio player, show notes, and transcript: https://www.preposterousuniverse.com/podcast/2023/05/15/236-…al-theory/

Is there a multiverse, and if so, how should we think of ourselves within it? In many modern cosmological models, the universe includes more than one realm, with possibly different laws of physics, and these realms may or may not include intelligent observers. There is a longstanding puzzle about how, in such a scenario, we should calculate what we, as presumably intelligent observers ourselves, should expect to see. Today’s guest, Thomas Hertog, is a physicist and longstanding collaborator of Stephen Hawking. They worked together (often with James Hartle) to address these questions, and the work is still ongoing.

Continue reading “Mindscape 236 | Thomas Hertog on Quantum Cosmology and Hawking’s Final Theory” »

Jul 14, 2023

Quantum Computers Could Be Truly Useful in Just Two Years

Posted by in categories: computing, quantum physics

The machines are coming much sooner than we thought.

Jul 14, 2023

Quantum randomness of empty space can be controlled with a laser

Posted by in categories: computing, quantum physics

The minuscule fluctuations of seemingly empty space can be controlled just enough to make the building blocks of a new type of computer.

By Karmela Padavic-Callaghan

Jul 14, 2023

Scientists Successfully Use Exotic Atoms To Verify Quantum Electrodynamics

Posted by in categories: particle physics, quantum physics

An international team of researchers, including members from the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), has succeeded in a proof-of-principle experiment to verify strong-field quantum electrodynamics within exotic atoms, according to a recent study published in Physical Review Letters.

Physical Review Letters (PRL) is a peer-reviewed scientific journal published by the American Physical Society. It is one of the most prestigious and influential journals in physics, with a high impact factor and a reputation for publishing groundbreaking research in all areas of physics, from particle physics to condensed matter physics and beyond. PRL is known for its rigorous standards and short article format, with a maximum length of four pages, making it an important venue for rapid communication of new findings and ideas in the physics community.

Jul 14, 2023

Toward ternary quantum information processing: Success generating two-qutrit entangling gates with high fidelity

Posted by in categories: information science, quantum physics

An interdisciplinary team at the Advanced Quantum Testbed (AQT) at Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley’s Quantum Nanoelectronics Laboratory (QNL) achieved a technical breakthrough using qutrits—three-level systems—on a superconducting quantum processor.

The team successfully entangled two qutrits with gate fidelities significantly higher than in previously reported works, thus getting closer to enabling ternary logic that can encode more information than their binary counterparts—qubits.

Published in Nature Communications in December 2022 and featured as an editor’s highlight, this experimental success pushes forward AQT’s qutrit research and development, including previous experimental successes published in 2021 in Physical Review X and Physical Review Letters. Ternary quantum information processors offer significant potential advantages in quantum simulation and error correction, as well as the ability to improve certain quantum algorithms and applications.

Jul 14, 2023

Quantum drive that draws ‘limitless power’ from Sun will fly to orbit this year

Posted by in categories: energy, quantum physics, satellites

IVO Ltd. believes its new ‘Quantum Drive’ defies the laws of motion, and it aims to put it to the test by sending it to orbit on a SpaceX rocket.

US company IVO Ltd., a wireless power technology firm, is set to send an all-electric propulsion system for satellites to space for the first time in October.

Continue reading “Quantum drive that draws ‘limitless power’ from Sun will fly to orbit this year” »