Toggle light / dark theme

An international team of researchers affiliated with UNIST has unveiled a novel cross-linker additive that significantly addresses the longstanding stability issues associated with organic solar cells, also known as organic photovoltaics (OPVs).

With the incorporation of just 0.05% of this cross-linking agent, the lifespan of OPVs can be improved by over 59%. Industry analysts suggest this breakthrough brings the commercialization of OPVs—regarded as next-generation solar cells—closer to reality.

Led by Professor BongSoo Kim in the Department of Chemistry at UNIST, the research team, in collaboration with researchers from the University of California, Santa Barbara (UCSB), the University of Lille in France, and the French National Center for Scientific Research (CNRS), identified the operational principles of this innovative cross-linker using a variety of advanced analytical techniques.

In an amazing achievement akin to adding solar panels to your body, a northeast sea slug sucks raw materials from algae to provide its lifetime supply of solar-powered energy, according to a study by Rutgers University–New Brunswick and other scientists.

“It’s a remarkable feat because it’s highly unusual for an animal to behave like a plant and survive solely on photosynthesis,” said Debashish Bhattacharya, senior author of the study and distinguished professor in the Department of Biochemistry and Microbiology at Rutgers–New Brunswick. “The broader implication is in the field of artificial photosynthesis. That is, if we can figure out how the slug maintains stolen, isolated plastids to fix carbon without the plant nucleus, then maybe we can also harness isolated plastids for eternity as green machines to create bioproducts or energy. The existing paradigm is that to make green energy, we need the plant or alga to run the photosynthetic organelle, but the slug shows us that this does not have to be the case.”

The sea slug Elysia chlorotica, a mollusk that can grow to more than two inches long, has been found in the intertidal zone between Nova Scotia, Canada, and Martha’s Vineyard, Massachusetts, as well as in Florida. Juvenile sea slugs eat the nontoxic brown alga Vaucheria litorea and become photosynthetic – or solar-powered – after stealing millions of algal plastids, which are like tiny solar panels, and storing them in their gut lining, according to the study published online in the journal Molecular Biology and Evolution.

The ultrafast dynamics and interactions of electrons in molecules and solids have long remained hidden from direct observation. For some time now, it has been possible to study these quantum-physical processes—for example, during chemical reactions, the conversion of sunlight into electricity in solar cells and elementary processes in quantum computers—in real time with a temporal resolution of a few femtoseconds (quadrillionths of a second) using two-dimensional electronic spectroscopy (2DES).

However, this technique is highly complex. Consequently, it has only been employed by a handful of research groups worldwide to date. Now a German-Italian team led by Prof. Dr. Christoph Lienau from the University of Oldenburg has discovered a way to significantly simplify the experimental implementation of this procedure. “We hope that 2DES will go from being a methodology for experts to a tool that can be widely used,” explains Lienau.

Two doctoral students from Lienau’s Ultrafast Nano-Optics research group, Daniel Timmer and Daniel Lünemann, played a key role in the discovery of the new method. The team has now published a paper in Optica describing the procedure.

TAMPA, Fla. — Star Catcher Industries, a startup designing spacecraft to beam solar energy to other satellites in low Earth orbit, has secured funding from Florida’s economic development agency to demonstrate the technology at a former Space Shuttle landing site.

Space Florida is providing a $2 million financial package for the one-year-old venture, Star Catcher CEO Andrew Rush told SpaceNews March 7, with most of the funds supporting tests this summer from Space Florida’s Launch and Landing Facility at the Cape — one of the longest runways in the world.

Rush said Star Catcher plans to use the facility to demonstrate its ability to beam hundreds of watts of energy to multiple simulated satellites simultaneously from more than a kilometer away, marking a critical proof point for the Jacksonville, Florida-based startup’s technology.

The future of space exploration is beyond imagination! From SpaceX Starship to NASA’s Artemis II, groundbreaking innovations are shaping the 2050 future world. In this video, we dive into amazing inventions you must see, including space elevators, nuclear-powered rockets, and space mining that could redefine our existence beyond Earth.

🌍 Explore the most futuristic and emerging technologies revolutionizing space travel, space stations, and massive satellite internet in outer space. Will Space-Based Solar Power solve Earth’s energy crisis? Could O’Neill Cylinders and Alderson Disks become the future of human colonies in space?

🔍 Get a detailed review of the latest advancements from SpaceX, NASA, ESA, and other space agencies working on secretive space planes and cutting-edge space habitats like Haven-2 Module and Eos-X Space.

💡 Topics Covered:
✅ SpaceX Starship & Mars Missions.
✅ NASA Artemis II & Future Moon Colonization.
✅ Space Elevators & Interplanetary Travel.
✅ Nuclear-Powered Rockets & Next-Gen Propulsion.
✅ Space Mining & Resource Extraction.
✅ Space Habitats – O’Neill Cylinders & Alderson Disks.
✅ Space-Based Solar Power – Unlimited Energy?

👨‍🚀 Join us on this journey into the future of space technology! If you’re excited about Future Space Technology That Will Change The World, hit that LIKE, SUBSCRIBE, and turn on notifications for more science and technology updates from 99techspot!

Renewable energy in Japan will receive a seismic shift via perovskite solar cells, the latest development that would change the way solar energy is viewed. Lightweight, flexible, and adaptable, these solar cells will provide a more viable means to producing energy within a city, responding to shortages of land and sustainable issues. Let’s see how Japan is benefiting from the PSC technology to bring about a green future.

Japan is currently utilizing its competitive advantages to lead the rest of the world into the new renewable energy age. Under its revised energy plan, the Ministry of Industry now prioritizes PSCs on Section 0 of its plan wherein Japan aims to develop PSC sections generating 20 gigawatts of electricity equivalent to 20 nuclear reactors by fiscal 2040.

The strategy was designed to be closely aligned with the country’s commitment to net-zero emissions by 2050. At the center of this strategy is Japan’s position as the second-largest iodine producer in the world, a necessary ingredient in the manufacturing of perovskite solar cells.

In a bold move towards a sustainable future, Helsinki, Finland’s capital, has installed the world’s largest heat pump, a groundbreaking piece of technology that has the capacity to power 30,000 homes. This ambitious project is a significant step in the fight against climate change, utilizing renewable energy sources to provide a reliable and efficient heating system even in the coldest of winters. In this article, we’ll explore how this technological marvel works, its environmental impact, and the potential it has to change energy production on a global scale.

Helsinki’s heat pump represents a major breakthrough in energy technology. The system works by transferring heat from a colder environment to a warmer one, ensuring maximum energy efficiency. One of the most impressive features of this heat pump is its use of carbon dioxide as a refrigerant, which allows the pump to generate heat at temperatures of up to 90°C.

A standout innovation is the oil-free compressor, a key component that ensures the system operates efficiently while minimizing its environmental footprint. This marks the first time such a system has been implemented on this scale, reinforcing Finland’s commitment to adopting sustainable solutions for energy production. By using renewable energy sources like wind and solar power, this heat pump reduces the need for fossil fuels and helps Finland move towards a more sustainable energy future.

Researchers have developed a battery capable of converting nuclear energy into electricity through light emission, according to a new study.

Nuclear power plants generate about 20% of the electricity in the United States and produce minimal greenhouse gas emissions. However, they also generate radioactive waste, which poses risks to human health and the environment, making safe disposal a significant challenge.

To address this, a team led by researchers from The Ohio State University designed a system that harnesses ambient gamma radiation to generate electricity. By combining scintillator crystals—high-density materials that emit light when exposed to radiation—with solar cells, they successfully converted nuclear energy into an electric output powerful enough to run microelectronics, such as microchips.