Toggle light / dark theme

The field-reversal configuration (FRC) represents a fusion device concept capable of high power density with a compact geometry. Here, the authors report on the generation and sustainment of a FRC by means of neutral beam injection in the C-2W machine at TAE technologies. This contributes towards establishing FRC as an alternative economic fusion device.

Questions to inspire discussion.

Q: đŸ€– What are Kirk’s predictions for Tesla’s robotaxi rollout? A: Kirk predicts at least 1 million robotaxis on the road by end of 2026, with potential for 2–5 million by end of 2027.

Q: đŸŠŸ When does Kirk expect Tesla to sell Optimus robots to third parties? A: Kirk expects Optimus sales to third parties in the second half of 2026.

Q: 💰 What is the estimated rental price for Optimus robots? A: Kirk estimates Tesla will rent Optimus robots for $110,000-$120,000 per year.

Market and Economic Predictions.

Q: đŸ’č What economic environment does Kirk predict for late 2024? A: Kirk predicts a booming economic environment by Q4 2024, driven by the AI revolution and productivity increases.

Tesla’s Full Self-Driving (FSD) technology is rapidly advancing, impressing users and analysts alike, while navigating challenges in the auto industry and broader economic factors.

Questions to inspire discussion.

Tesla’s FSD Progress.

🚗 Q: How many unsupervised miles has Tesla’s FSD driven? A: Tesla’s FSD has driven over 50,000 unsupervised miles, demonstrating significant progress in autonomous driving capabilities.

🌐 Q: What indicates Tesla’s transition to software-defined earnings? A: FSD unsupervised miles and operating domain growth are key leading indicators of Tesla’s shift towards software-defined earnings.

đŸ€– Q: How does Tesla’s FSD showcase AI potential in driving? A: Tesla’s FSD unsupervised capabilities, demonstrated in complex driving scenarios, serve as a proof case for artificial intelligence’s potential in autonomous driving.

Dr. Aubrey de Grey reveals why reversing aging may be easier than slowing it down in this mind-expanding conversation that challenges conventional wisdom about human longevity. The renowned biomedical gerontologist outlines his damage repair approach that’s gaining mainstream scientific acceptance after initial skepticism.

The financial landscape of longevity research has dramatically transformed, with billions flowing into the space. Dr. de Grey provides an insider’s assessment of major players including HEvolution (Saudi-backed), Altos Labs (Bezos-funded), Calico (Google-funded) and Retro Biosciences (Sam Altman’s venture), offering candid insights about which approaches show the most promise and why Google’s Calico has struggled despite substantial resources.

Regulatory innovation emerges as a crucial accelerator for progress. Montana’s groundbreaking expansion of Right to Try legislation now allows anyone to access treatments that have passed FDA safety trials, while special economic zones like Prospera in Honduras are creating regulatory environments specifically designed for biomedical innovation. These developments could create the competitive pressure needed to modernize traditional regulatory structures worldwide.

At the LEV Foundation, Dr. de Grey is conducting a thousand-mouse study combining four different damage repair interventions in middle-aged mice, aiming for a full year of life extension—far beyond the four months typically achieved. Unlike conventional approaches that rely on dietary modifications, this ambitious project incorporates advanced cell and gene therapies that target multiple forms of age-related damage simultaneously.

Looking forward, Dr. de Grey offers his characteristic probabilistic prediction: a 50–50 chance of reaching \.

Elon Musk’s Tesla is on the verge of launching a self-driving platform that could revolutionize transportation with millions of affordable robotaxis, positioning the company to outpace competitors like Uber ## ## Questions to inspire discussion ## Tesla’s Autonomous Driving Revolution.

🚗 Q: How is Tesla’s unsupervised FSD already at scale? A: Tesla’s unsupervised FSD is currently deployed in 7 million vehicles, with millions of units of hardware 4 dormant in older vehicles, available at a price point of $30,000 or less.

🏭 Q: What makes Tesla’s autonomous driving solution unique? A: Tesla’s solution is vertically integrated with end-to-end ownership of the entire system, including silicon design, software platform, and OEM, allowing them to keep costs low and push down utilization on ride-sharing networks. Impact on Ride-Sharing Industry.

đŸ’Œ Q: How will Tesla’s autonomous vehicles affect Uber drivers? A: Tesla’s unsupervised self-driving cars will likely replace Uber’s 1.2 million US drivers, being 4x more useful due to no breaks and no human presence, operating at a per-mile cost below 50% of current Uber rates.

💰 Q: What economic pressure will Tesla’s solution put on Uber? A: Tesla’s autonomous driving solution will create tremendous pressure on Uber, with its cost structure acting as a magnet for high utilization, maintaining low pre-pressure costs for Tesla due to their fundamentally different design. Future Implications.

đŸ€ Q: What potential strategy might Uber adopt to compete with Tesla? A: Uber may need to approach Tesla to pre-buy their first 2 million Cyber Caps upfront, including production costs, as potentially the only path to compete with Tesla’s autonomous driving solution.

At Stanford HAI, we believe AI is poised to be the most transformative technology of the 21st century. But its benefits won’t be evenly distributed unless we guide its development thoughtfully. The AI Index offers one of the most comprehensive, data-driven views of artificial intelligence. Recognized as a trusted resource by global media, governments, and leading companies, the AI Index equips policymakers, business leaders, and the public with rigorous, objective insights into AI’s technical progress, economic influence, and societal impact.

When it comes to upgrading electrical and broadband infrastructure, new research from the University of Massachusetts Amherst shows that a “dig once” approach is nearly 40% more cost effective than replacing them separately.

The study, published in the journal Cell Reports Sustainability, also found that the greatest benefit comes from proactively undergrounding lines that are currently above ground, even if lines haven’t reached the end of their usefulness.

Co-undergrounding is the practice of burying both electric and broadband internet lines together.