Toggle light / dark theme

Teleportation Becomes a Scientific Reality

When we think about the future of our communications, we rarely imagine that it could be hidden in the intricacies of the infinitely small. Yet, it is there, among frisky photons, that the next digital revolution could take shape. A simple photon, teleported from one point to another across the globe via the Internet, opens up dizzying horizons. Who would have thought that the key to our future exchanges would lie in an elementary particle, capable of challenging everything we thought we knew about information transmission?

Researchers at Northwestern University have recently achieved a major milestone in the field of quantum physics. They have succeeded in teleporting a photon over a distance of 30.2 km through an Internet network. This feat, once confined to the realm of science fiction novels, represents a significant advance in exploring the possibilities offered by quantum entanglement. With this accomplishment, the foundations of a future global quantum network seem to be rapidly approaching.

Where did cosmic rays come from? Astrophysicists are closer to finding out

New research published by Michigan State University astrophysicists could help scientists answer a century-old question: Where did galactic cosmic rays come from?

Cosmic rays—high-energy particles moving close to the speed of light—originated from somewhere in the Milky Way galaxy and beyond, but exactly where has been a mystery since they were discovered in 1912. Shuo Zhang, MSU assistant professor of physics and astronomy, and her group led two studies that shed new light on where cosmic rays might have come from. The recently published findings were presented at the 246th meeting of the American Astronomical Society in Anchorage, Alaska.

The sources of these high-energy, fast-moving particles could bear the nature of black holes, supernova remnants and star-forming regions. These extreme astrophysical events are also known to produce neutrinos—tiny, nearly massless particles that are found in abundance not only deep in space, but also on our planet.

Reports in Advances of Physical Sciences

In this paper, the authors propose a three-dimensional time model, arguing that nature itself hints at the need for three temporal dimensions. Why three? Because at three different scales—the quantum world of tiny particles, the realm of everyday physical interactions, and the grand sweep of cosmological evolution—we see patterns that suggest distinct kinds of “temporal flow.” These time layers correspond, intriguingly, to the three generations of fundamental particles in the Standard Model: electrons and their heavier cousins, muons and taus. The model doesn’t just assume these generations—it explains why there are exactly three and even predicts their mass differences using mathematics derived from a “temporal metric.”


This paper introduces a theoretical framework based on three-dimensional time, where the three temporal dimensions emerge from fundamental symmetry requirements. The necessity for exactly three temporal dimensions arises from observed quantum-classical-cosmological transitions that manifest at three distinct scales: Planck-scale quantum phenomena, interaction-scale processes, and cosmological evolution. These temporal scales directly generate three particle generations through eigenvalue equations of the temporal metric, naturally explaining both the number of generations and their mass hierarchy. The framework introduces a metric structure with three temporal and three spatial dimensions, preserving causality and unitarity while extending standard quantum mechanics and field theory.

50 Years Later, a Quantum Mystery Has Finally Been Solved

The quantum physics community is buzzing with excitement after researchers at Rice University finally observed a phenomenon that had eluded scientists for over 70 years. This breakthrough, recently published in Science Advances is known as the superradiant phase transition (SRPT), represents a significant milestone in quantum mechanics and opens extraordinary possibilities for future technological applications.

In 1954, physicist Robert H. Dicke proposed an intriguing theory suggesting that under specific conditions, large groups of excited atoms could emit light in perfect synchronization rather than independently. This collective behavior, termed superradiance, was predicted to potentially create an entirely new phase of matter through a complete phase transition.

For over seven decades, this theoretical concept remained largely confined to equations and speculation. The primary obstacle was the infamous “no-go theorem,” which seemingly prohibited such transitions in conventional light-based systems. This theoretical barrier frustrated generations of quantum physicists attempting to observe this elusive phenomenon.

Study offers new insights into first-principles calculations of hadron structure

Researchers from the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences (CAS), together with collaborators from the Instituto Tecnológico de Aeronáutica in Brazil and Iowa State University, have theoretically explored the influence mechanism of quark-gluon interactions on the parton distribution functions (PDFs) within hadrons, providing new insights into first-principles calculations of hadron structure.

Their findings are published as a letter in Physical Review D.

Hadrons are essential building blocks of the universe. These composite particles, which are composed of quarks and , include protons, neutrons, , and others. Investigating the behavior of quarks and gluons within hadrons is crucial for unraveling the mysteries of the microscopic structure of matter.

Can space and time emerge from simple rules? Wolfram thinks so

Stephen Wolfram joins Brian Greene to explore the computational basis of space, time, general relativity, quantum mechanics, and reality itself.

This program is part of the Big Ideas series, supported by the John Templeton Foundation.

Participant: Stephen Wolfram.
Moderator: Brian Greene.

0:00:00 — Introduction.
01:23 — Unifying Fundamental Science with Advanced Mathematical Software.
13:21 — Is It Possible to Prove a System’s Computational Reducibility?
24:30 — Uncovering Einstein’s Equations Through Software Models.
37:00 — Is connecting space and time a mistake?
49:15 — Generating Quantum Mechanics Through a Mathematical Network.
01:06:40 — Can Graph Theory Create a Black Hole?
01:14:47 — The Computational Limits of Being an Observer.
01:25:54 — The Elusive Nature of Particles in Quantum Field Theory.
01:37:45 — Is Mass a Discoverable Concept Within Graph Space?
01:48:50 — The Mystery of the Number Three: Why Do We Have Three Spatial Dimensions?
01:59:15 — Unraveling the Mystery of Hawking Radiation.
02:10:15 — Could You Ever Imagine a Different Career Path?
02:16:45 — Credits.

VISIT our Website: http://www.worldsciencefestival.com.
FOLLOW us on Social Media:
Facebook: / worldsciencefestival.
Twitter: / worldscifest.
Instagram: https://www.instagram.com/worldscifest/
TikTok: https://www.tiktok.com/@worldscifest.
LinkedIn: https://www.linkedin.com/company/world-science-festival.
#worldsciencefestival #briangreene #cosmology #astrophysics

Gravity is no longer fundamental: a new quantum discovery reveals that it emerges from hidden spacetime symmetry principles

In a groundbreaking discovery, physicists from Aalto University have unveiled a new framework that unites gravity with the forces described by the Standard Model of particle physics, potentially bringing us closer to the long-awaited “Theory of Everything.” This discovery doesn’t just reframe gravity—it offers a fresh perspective on how the fundamental forces of nature might work together¹

Escaping cosmic strings: How dark photons could finally work as dark matter

Researchers, in a recent Physical Review Letters paper, introduce a new mechanism that may finally allow ultralight dark photons to be considered serious candidates for dark matter, with promising implications for detection efforts.

Around 85% of all matter is believed to be dark matter, yet this elusive substance continues to puzzle scientists because it cannot be observed directly.

One of the candidates for is dark photons. These hypothetical particles are similar to regular photons but have mass and interact only weakly with normal matter.

Highly charged muonic ions observed in gas-phase experiment for first time

An international team of researchers, including members from the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), has directly observed “highly charged muonic ions,” a completely new class of exotic atomic systems, in a gas-phase experiment for the first time. The study was published online on June 16 in Physical Review Letters.

The observation highlights the capabilities of advanced superconducting transition-edge-sensor (TES) microcalorimeters in revealing previously inaccessible atomic phenomena.

Normal atoms consist of a nucleus and bound electrons and are electrically neutral. However, when many electrons are removed, the atom becomes highly charged. These charged atoms, known as highly charged ions, are valuable tools for research across various fields, including fundamental physics, nuclear fusion, surface science, and astronomy.