Toggle light / dark theme

Restoring youth: Scientists use engineered cells to restore vitality in primates

Researchers from the Chinese Academy of Sciences and Capital Medical University utilized gene editing to create senescence-resistant human mesenchymal progenitor cells (SRCs). In a 44-week trial on aged macaques, biweekly intravenous SRC injections induced no adverse effects and spurred multi-system rejuvenation in 10 major physiological systems and 61 tissue types. Treated macaques displayed enhanced cognitive function and diminished age-related degeneration. The SRCs work by releasing exosomes that curb cellular senescence and inflammation. This study presents the first primate-level proof of cell therapy’s safety and efficacy in reversing aging, presenting a potential multi-system approach for human anti-aging research.

Scientists use gene editing to correct harmful mitochondrial mutations in human cells

In a step toward treating mitochondrial diseases, researchers in the Netherlands have successfully edited harmful mutations in mitochondrial DNA using a genetic tool known as a base editor. The results, published in the open-access journal PLOS Biology, offer new hope for people with rare genetic conditions.

Mitochondria have their own small set of DNA. Mutations in this mitochondrial DNA can lead to a wide range of maternally inherited diseases, cancer, and aging-related conditions. While the development of CRISPR technology has given scientists new ways to correct mutations in nuclear DNA, this system cannot effectively cross the mitochondrial membrane and reach mitochondrial DNA.

In the new study, the researchers used a tool called a base editor—specifically, a DdCBE (double-stranded DNA deaminase toxin A-derived cytosine ). This tool allows scientists to change a single letter in the DNA code without cutting it, and it works on mitochondrial DNA.

Gene editing treats smooth muscle disease in preclinical model

Using gene editing in a preclinical model, researchers at UT Southwestern Medical Center blocked the symptoms of a rare smooth muscle disease before they developed. Their findings, published in Circulation, could eventually lead to gene therapies for this and other genetic diseases affecting smooth muscle cells.

“Gene editing has been used in other disease contexts, but its application to inherited vascular diseases, particularly targeting in vivo, is still emerging. Our approach advances the field by demonstrating functional correction in a cell type that’s notoriously difficult to target,” said Eric Olson, Ph.D., Chair and Professor of Molecular Biology and a member of the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern.

Dr. Olson co-led the study with Ning Liu, Ph.D., Professor of Molecular Biology, and first author Qianqian Ding, Ph.D., postdoctoral researcher, both members of the Olson Lab.

Human Cyborgs Are No Longer Science Fiction! (Insane Breakthroughs)

Are human cyborgs the future? You won’t believe how close we are to merging humans with machines! This video uncovers groundbreaking advancements in cyborg technology, from bionic limbs and brain-computer interfaces to biological robots like anthrobots and exoskeletons. Discover how these innovations are reshaping healthcare, military, and even space exploration.

Learn about real-world examples, like Neil Harbisson, the colorblind cyborg artist, and the latest developments in brain-on-a-chip technology, combining human cells with artificial intelligence. Explore how cyborg soldiers could revolutionize the battlefield and how genetic engineering might complement robotic enhancements.

The future of human augmentation is here. Could we be on the verge of transforming humanity itself? Dive in to find out how science fiction is quickly becoming reality.

How do human cyborgs work? What are the latest AI breakthroughs in cyborg technology? How are cyborgs being used today? Could humans evolve into hybrid beings? This video answers all your questions. Don’t miss it!

#ai.
#cyborg.
#ainews.

====================================

Engineering biology applications for environmental solutions: potential and challenges

Engineering biology applies synthetic biology to address global environmental challenges like bioremediation, biosequestration, pollutant monitoring, and resource recovery. This perspective outlines innovations in engineering biology, its integration with other technologies (e.g., nanotechnology, IoT, AI), and commercial ventures leveraging these advancements. We also discuss commercialisation and scaling challenges, biosafety and biosecurity considerations including biocontainment strategies, social and political dimensions, and governance issues that must be addressed for successful real-world implementation. Finally, we highlight future perspectives and propose strategies to overcome existing hurdles, aiming to accelerate the adoption of engineering biology for environmental solutions.


The scale of global environmental challenges requires a multi-pronged approach, which utilises all the technologies at our disposal. Here, authors provide their perspective on the potential of engineering biology for environmental biotechnology, summarizing their thoughts on the key challenges and future possibilities for the field.

Engineers turn toxic ancient tomb fungus into anti-cancer drug

Penn-led researchers have turned a deadly fungus into a potent cancer-fighting compound. After isolating a new class of molecules from Aspergillus flavus, a toxic crop fungus linked to deaths in the excavations of ancient tombs, the researchers modified the chemicals and tested them against leukemia cells. The result? A promising cancer-killing compound that rivals FDA-approved drugs and opens up new frontiers in the discovery of more fungal medicines.

“Fungi gave us penicillin,” says Sherry Gao, Presidential Penn Compact Associate Professor in Chemical and Biomolecular Engineering (CBE) and in Bioengineering (BE) and senior author of a new paper in Nature Chemical Biology on the findings. “These results show that many more medicines derived from natural products remain to be found.”

Latest Trends in Artificial Intelligence in Biotechnology & Biology

🔥 Witness the AI Revolution in Biotechnology & Biology!
In this video, know how Artificial Intelligence is transforming the world of biotech — from AI-powered drug discovery and CRISPR gene editing to precision medicine and bioinformatics!

💡 Get a glimpse of future labs, real-world breakthroughs, and career trends that are reshaping life sciences as we know it.

🚀 Whether you’re a student, researcher, or biotech enthusiast — this is your gateway to the future!

👉 Subscribe to Biotecnika for powerful insights, expert guidance, and the latest in biotech innovation:

Stay updated with the latest in AI, Biotechnology, and Career Insights – Subscribe to Biotecnika now!” Subscribe to Biotecnika for more biotech breakthroughs!“
“Don’t miss out – Hit subscribe for biotech + AI updates!”

AI ML in Biology, Bioinformatics & Computational Biology Summer Training Program With Project Work + Paper Publication Assistance.

Creating the World’s First CRISPR Medicine, for Sickle Cell Disease

When Vijay Sankaran was an MD-PhD student at Harvard Medical School in the mid-2000s, one of his first clinical encounters was with a 24-year-old patient whose sickle cell disease left them with almost weekly pain episodes.

“The encounter made me wonder, couldn’t we do more for these patients?” said Sankaran, who is now the HMS Jan Ellen Paradise, MD Professor of Pediatrics at Boston Children’s Hospital.

In 2008, Orkin, Sankaran, and colleagues achieved their vision by identifying a new therapeutic target for sickle cell disease.

In December 2023, through the development efforts of CRISPR Therapeutics and Vertex Pharmaceuticals, their decades-long endeavor reached fruition in the form of a new treatment, CASGEVY, approved by the U.S. Food and Drug Administration.

The decision has ushered in a new era for sickle cell disease treatment — and marked the world’s first approval of a medicine based on CRISPR/Cas9 gene-editing technology.


How a genetic insight paired with gene editing technology led to a life-changing new therapy.

Gene-editing nanoparticle system targets multiple organs simultaneously

A gene-editing delivery system developed by UT Southwestern Medical Center researchers simultaneously targeted the liver and lungs of a preclinical model of a rare genetic disease known as alpha-1 antitrypsin deficiency (AATD), significantly improving symptoms for months after a single treatment, a new study shows. The findings, published in Nature Biotechnology, could lead to new therapies for a variety of genetic diseases that affect multiple organs.

“Multi-organ diseases may need to be treated in more than one place. The development of multi-organ-targeted therapeutics opens the door to realizing those opportunities for this and other diseases,” said study leader Daniel Siegwart, Ph.D., Professor of Biomedical Engineering, Biochemistry, and in the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern.

Gene editing—a group of technologies designed to correct disease-causing mutations in the genome—has the potential to revolutionize medicine, Dr. Siegwart explained. Targeting these technologies to specific organs, tissues, or will be necessary to effectively and safely treat patients.