Menu

Blog

Archive for the ‘quantum physics’ category: Page 137

Jan 4, 2024

Quantum computing is taking on its biggest challenge: noise

Posted by in categories: computing, quantum physics

For a while researchers thought they’d have to make do with noisy, error-prone systems, at least in the near term. That’s starting to change.

Jan 4, 2024

No More EV Battery Replacements? VW’s Solid State Cell Holds Up for 300K Miles

Posted by in category: quantum physics

EV batteries tend to lose range capacity over their lifetime, but Volkswagen-backed startup PowerCo says it tested one from California-based QuantumScape that ‘practically does not age.’

Jan 3, 2024

Gravitational wave observatory in Eastern WA breaks quantum limit. Why it matters

Posted by in categories: cosmology, quantum physics

KENNEWICK — The LIGO Hanford Observatory near Richland is expected to detect 60% more cataclysmic cosmic events — like colliding neutron stars and black holes — thanks to a quantum limit breakthrough.

Since the observatory was turned back on in May after three years of upgrades, including adding new quantum squeezing technology, it can probe a larger volume of the universe.

“Now that we have surpassed this quantum limit, we can do a lot more astronomy,” said Lee McCuller, assistant professor of physics at the California Institute of Technology and a leader in the study published in the journal “Physical Review X.”

Jan 3, 2024

Why the Universe might be a Hologram

Posted by in categories: holograms, quantum physics

A quarter century ago, physicist Juan Maldacena proposed the AdS/CFT correspondence, an intriguing holographic connection between gravity in a three-dimensional universe and quantum physics on the universe’s two-dimensional boundary. This correspondence is at this stage, even a quarter century after Maldacena’s discovery, just a conjecture.

A statement about the nature of the universe that seems to be true, but one that has not yet been proven to actually reflect the reality that we live in. And what’s more, it only has limited utility and application to the real universe.

Still, even the mere appearance of the correspondence is more than suggestive. It’s telling that there is something deeply fundamental to the hologram, that the physics of the volume of the universe might just translate to the physics on the surface, and that there is more to be learned there.

Jan 2, 2024

Can this startup help China break through US chip restrictions?

Posted by in categories: military, quantum physics, robotics/AI

The US is trying its best to slow China down.


However, an equally serious challenger has now emerged in the form of SEIDA, a Chinese startup founded by a veteran Silicon Valley software executive.

Liguo “Recoo” Zhang, the CEO of SEIDA, and three other Chinese-born colleagues left Siemens EDA, a U.S. unit of Siemens AG, aiming to break the foreign monopoly on Optical Proximity Correction (OPC) technology, reported Reuters.

Continue reading “Can this startup help China break through US chip restrictions?” »

Jan 2, 2024

Quantum Key Distribution for Secure Optical Communication

Posted by in categories: encryption, quantum physics, security

In the modern digital age, where data flows freely and sensitive information is constantly in transit, secure communication has become essential. Traditional encryption methods, while effective, are not immune to the evolving threat landscape. This is where quantum key distribution (QKD) emerges as a revolutionary solution, offering unmatched security for transmitting sensitive data.

Image Credit: asharkyu/Shutterstock.com

The idea of quantum key distribution (QKD) dates back to Stephen Wiesner’s concept of quantum conjugate coding at Columbia University in the 1970s. Charles H. Bennett later built on this idea, introducing the first QKD protocol, BB84, in the 1980s, using nonorthogonal states. Since then, it has matured into one of the most established quantum technologies, commercially available for over 15 years.

Jan 2, 2024

China, Russia claim to have tested hack-proof quantum communication link

Posted by in categories: cybercrime/malcode, encryption, quantum physics

The secure quantum communication covered a distance of about 4,000 kilometers using China’s quantum satellite Mozi.


Scientists in Russia and China have established quantum communication encrypted with the help of secure keys transmitted by China’s quantum satellite, reports SCMP.

Jan 2, 2024

Can Consciousness Be Explained by Quantum Physics? New Research

Posted by in categories: neuroscience, particle physics, quantum physics

Year 2021 face_with_colon_three


In our new paper, we’ve investigated how quantum particles could move in a complex structure like the brain, but in a lab setting. If our findings can one day be compared with activity measured in the brain, we may come one step closer to validating or dismissing Penrose and Hameroff’s controversial theory.

Continue reading “Can Consciousness Be Explained by Quantum Physics? New Research” »

Jan 2, 2024

Quantum thermal transistors: Harnessing quantum measurement and feedback

Posted by in categories: computing, quantum physics

Researchers are actively engaged in the dynamic manipulation of quantum systems and materials to realize significant energy management and conservation breakthroughs.

This endeavor has catalyzed the development of a cutting-edge platform dedicated to creating quantum thermal machines, thereby unlocking the full potential of quantum technologies in advanced energy solutions.

Jan 2, 2024

Researchers Study a Million Galaxies to find out how the Universe Began

Posted by in categories: cosmology, quantum physics

A team of researchers has analyzed more than one million galaxies to explore the origin of the present-day cosmic structures, reports a recent study published in Physical Review D as an Editors’ Suggestion.

Until today, precise observations and analyses of the cosmic microwave background (CMB) and large-scale structure (LSS) have led to the establishment of the standard framework of the universe, the so-called ΛCDM model, where cold dark matter (CDM) and dark energy (the cosmological constant, Λ) are significant characteristics.

This model suggests that primordial fluctuations were generated at the beginning of the universe, or in the early universe, which acted as triggers, leading to the creation of all things in the universe including stars, galaxies, galaxy clusters, and their spatial distribution throughout space. Although they are very small when generated, fluctuations grow with time due to the gravitational pulling force, eventually forming a dense region of dark matter, or a halo. Then, different halos repeatedly collided and merged with one another, leading to the formation of celestial objects such as galaxies.