A research team has, for the first time, realized the quantum amplification of an extremely weak magnetic field by using dark spin, with the magnetic field magnification exceeding a factor of 5,000 and the single magnetic field measurement accuracy reaching 0.1fT level. The study is published in Proceedings of the National Academy of Sciences.
Category: quantum physics – Page 135
A team of researchers affiliated with several institutions in Israel has used a Floquet quantum detector to constrain axion-like dark matter, hoping to reduce its parameter space. In their paper published in the journal Science Advances, the group describes their approach to constraining the theoretical dark matter particle as a means to learning more about its properties.
Despite several years of effort by physicists around the world, dark matter remains a mystery. Most physicists agree that it exists, but thus far, no one has been able to prove it. One promising theory involving the existence of interacting massive particles has begun to lose its luster, and some teams are looking for something else. In this new effort, the researchers seek axions, or axion-like particles. Such dark matter particles have been theorized to be zero-spin and able to possess any number of combinations of mass and interaction strength. The team sought to constrain the features of axion-like particles to reduce the number of possibilities of their existence and thereby increase the chances of proving their existence.
The researchers used a shielded glass cell filled with rubidium-85 and xenon-129 atoms. They fired two lasers at the cell—one to polarize the rubidium atoms’ electronic spin and the xenon’s nuclear spin, and the other to measure spin changes. The experiment was based on the idea that the oscillating field of the axions would impact on the xenon’s spin when they are close in proximity. The researchers then applied a magnetic field to the cell as a means of blocking the spin of the xenon to within a narrow range of frequencies, allowing them to scan the possible oscillation frequencies that correspond to the range of the axion-like particles. Under this scenario, the Floquet field is theorized to have a frequency roughly equal to the difference between the nuclear magnetic resonance (NMR) and the electron paramagnetic resonance, and their experiment closes that gap.
Everything in the universe may be preordained, according to physics.
By Dan Falk
On the morning of June 28, 1914, a Bosnian Serb student named Gavrilo Princip stood outside Moritz Schiller’s delicatessen near the Latin Bridge in Sarajevo. Sometime after 10:45 A.M., a motorcade carrying archduke Franz Ferdinand, heir to the throne of Austria-Hungary, passed within meters of Princip, who drew his 0.38-caliber pistol and fired. One bullet struck the archduke in the neck. He was rushed to the military governor’s residence for medical treatment, but by 11:30 A.M. he was pronounced dead.
Superfast magnetic memory devices are possible after scientists engineer way to use lasers to magnetize non-magnetic materials.
Building a useful quantum computer in practice is incredibly challenging. Significant improvements are needed in the scale, fidelity, speed, reliability, and programmability of quantum computers to fully realize their benefits. Powerful tools are needed to help with the many complex physics and engineering challenges that stand in the way of useful quantum computing.
AI is fundamentally transforming the landscape of technology, reshaping industries, and altering how we interact with the digital world. The ability to take data and generate intelligence paves the way for groundbreaking solutions to some of the most challenging problems facing society today. From personalized medicine to autonomous vehicles, AI is at the forefront of a technological revolution that promises to redefine the future, including many challenging problems standing in the way of useful quantum computing.
Quantum computers will integrate with conventional supercomputers and accelerate key parts of challenging problems relevant to government, academia, and industry. This relationship is described in An Introduction to Quantum Accelerated Supercomputing. The advantages of integrating quantum computers with supercomputers are reciprocal, and this tight integration will also enable AI to help solve the most important challenges standing in the way of useful quantum computing.
Scientists engineer the ‘purest ever silicon’ to build reliable qubits that can be manufactured to the size of a pinhead on a chip and power million-qubit quantum computers in the future.
Quantum spherical codes
Posted in computing, quantum physics
A new concept called quantum spherical codes could make the notoriously fragile information in a photon-based quantum computer less susceptible to errors.
Many recent experiments have stored quantum information in bosonic modes, such as photons in resonators or optical fibres. Now an adaptation of the classical spherical codes provides a framework for designing quantum error correcting codes for these platforms.
Researchers at ETH Zurich have, for the first time, made visible how electrons form vortices in a material at room temperature. Their experiment used a quantum sensing microscope with an extremely high resolution. In graphene, electrons behave like a liquid, which can lead to the formation of v.
Strongly interacting systems play an important role in quantum physics and quantum chemistry. Stochastic methods such as Monte Carlo simulations are a proven method for investigating such systems. However, these methods reach their limits when so-called sign oscillations occur.
This problem has now been solved by an international team of researchers from Germany, Turkey, the U.S., China, South Korea and France using the new method of wavefunction matching. As an example, the masses and radii of all nuclei up to mass number 50 were calculated using this method. The results agree with the measurements, the researchers now report in the journal Nature.
All matter on Earth consists of tiny particles known as atoms. Each atom contains even smaller particles: protons, neutrons and electrons. Each of these particles follows the rules of quantum mechanics. Quantum mechanics forms the basis of quantum many-body theory, which describes systems with many particles, such as atomic nuclei.
Exploring the complex domain of subatomic particles, researchers at the The Institute of Mathematical Science (IMSc) and the Tata Institute of Fundamental Research (TIFR) have recently published a novel finding in the journal Physical Review Letters. Their study illuminates a new horizon within quantum chromodynamics (QCD), shedding light on exotic subatomic particles and pushing the boundaries of our understanding of the strong force.