Menu

Blog

Archive for the ‘physics’ category: Page 189

Aug 9, 2020

The Force of Nothingness Has Been Used to Manipulate Objects

Posted by in categories: chemistry, physics, space

Scientists can use some pretty wild forces to manipulate materials. There’s acoustic tweezers, which use the force of acoustic radiation to control tiny objects. Optical tweezers made of lasers exploit the force of light. Not content with that, now physicists have made a device to manipulate materials using the force of… nothingness.

OK, that may be a bit simplistic. When we say nothingness, we’re really referring to the attractive force that arises between two surfaces in a vacuum, known as the Casimir force. The new research has provided not just a way to use it for no-contact object manipulation, but also to measure it.

The implications span multiple fields, from chemistry and gravitational wave astronomy all the way down to something as fundamental and ubiquitous as metrology — the science of measurement.

Aug 7, 2020

Newly Developed Laser Beam Defies the Laws of Light

Posted by in category: physics

A team of scientists at the University of Central California has developed a new kind of laser beam that transports messages in ‘wave packets’ and doesn’t follow the regular laws of light physics.

Aug 7, 2020

Two MIT students just solved Richard Feynman’s famed physics puzzle

Posted by in category: physics

Richard Feynman once asked a silly question. Two MIT students just answered it.

Aug 5, 2020

The mathematician who helped to reshape physics

Posted by in categories: mathematics, physics

Barry Simon linked a phenomenon that had shocked physicists to topology, the branch of mathematics that studies shapes.

Aug 5, 2020

Professor’s milestone in nuclear physics seeks to understand the universe itself

Posted by in categories: physics, space

A nuclear physics professor from Florida International University was among a team of researchers that proposed something so out of this world, colleagues first hesitated to accept it was possible.

In 1993, they boldly predicted how the densest materials in the universe—known to exist only in rare neutron —could be made here on Earth. Ultimately, their research was published in Physical Review C, a leading focused on nuclear .

It spawned a wave of follow up research that in 2006 confirmed their prediction was true. For the tiniest sliver of a second, researchers at the Thomas Jefferson National Accelerator Facility in Virginia were able to briefly create the material that exists inside a neutron star.

Aug 4, 2020

Don’t Miss These Astronomy Events In The Month Of August 2020!

Posted by in categories: physics, space

Must watch astronomy events this month.


Top 5 Space Apps: https://www.secretsofuniverse.in/astronomy-apps/
How to watch the planets: https://www.secretsofuniverse.in/planet-roundup-august-2020/

Continue reading “Don’t Miss These Astronomy Events In The Month Of August 2020!” »

Aug 1, 2020

Did Scientists Actually Spot Evidence Of Another Universe?

Posted by in categories: cosmology, mathematics, physics

In a study published earlier this month, a team of theoretical physicists is claiming to have discovered the remnants of previous universes hidden within the leftover radiation from the Big Bang. Our universe is a vast collection of observable matter, like gas, dust, stars, etc., in addition to the ever-elusive dark matter and dark energy. In some sense, this universe is all we know, and even then, we can only directly study about 5% of it, leaving 95% a mystery that scientists are actively working to solve. However, this group of physicists is arguing that our universe isn’t alone; it’s just one in a long line of universes that are born, grow, and die. Among these scientists is mathematical physicist Roger Penrose, who worked closely with Stephen Hawking and currently is the Emeritus Rouse Ball Professor of Mathematics at Oxford University. Penrose and his collaborators follow a cosmological theory called conformal cyclic cosmology (CCC) in which universes, much like human beings, come into existence, expand, and then perish.

Aug 1, 2020

Power of halometry

Posted by in categories: cosmology, physics

Statistical studies of the motions of millions of stars may reveal the subtle imprint of dark matter.

See more in Physics

Click to Expand.

Jul 30, 2020

How Physics Found a Geometric Structure for Math to Play With

Posted by in categories: mathematics, physics

Symplectic geometry is a relatively new field with implications for much of modern mathematics. Here’s what it’s all about.

Jul 29, 2020

Research team exactly solves experimental puzzle in high temperature superconductivity

Posted by in categories: materials, physics

Forty-five years after superconductivity was first discovered in metals, the physics giving rise to it was finally explained in 1957 at the University of Illinois at Urbana-Champaign, in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity.

Thirty years after that benchmark achievement, a new mystery confronted condensed matter physicists: the discovery in 1987 of copper-oxide or . Now commonly known as the cuprates, this new class of materials demonstrated physics that fell squarely outside of BCS theory. The cuprates are insulators at , but transition to a at a much higher critical temperature than traditional BCS superconductors. (The cuprates’ critical temperature can be as high as 170 Kelvin—that’s −153.67°F—as opposed to the much lower critical temperature of 4 Kelvin—or −452.47°F—for mercury, a BCS superconductor.)

The discovery of high-temperature superconductors, now more than 30 years ago, seemed to promise that a host of new technologies were on the horizon. After all, the cuprates’ superconducting phase can be reached using liquid nitrogen as a coolant, instead of the far costlier and rare liquid helium required to cool BCS superconductors. But until the unusual and unexpected superconducting behavior of these insulators can be theoretically explained, that promise remains largely unfulfilled.