Menu

Blog

Archive for the ‘particle physics’ category: Page 484

Feb 4, 2017

Cold Plasma Can Help Treat Non-Healing Wounds and Trigger Cellular Regeneration

Posted by in categories: biotech/medical, particle physics

In Brief Research by Russian scientists has revealed the efficacy of cold plasma as a treatment for non-healing wounds. Their study conclusions could lead to much-needed relief for the millions of people suffering from chronic open wounds.

Non-healing wounds are troublesome to treat, with current methods teetering between extremely difficult and impossible, but cold plasma might be able to change all that.

Researchers have attempted to use cold atmospheric-pressure plasma — a partially ionized gas with a proportion of charged particles close to 1 percent and a temperature of 99,726°C (179,540ºF) — for medical treatment before, but never specifically for non-healing wounds. Apart from confirming the bactericidal properties of cold plasma and showing that cells and tissues have a high resistance to it, those earlier studies yielded non-conclusive results.

Continue reading “Cold Plasma Can Help Treat Non-Healing Wounds and Trigger Cellular Regeneration” »

Feb 4, 2017

Scientists Simulate a New Material That Could Be Even Weirder Than Graphene

Posted by in categories: computing, nanotechnology, particle physics

We all love graphene — the one-atom-thick sheets of carbon aren’t just super flexible, harder than diamond, and stronger than steel, they’ve also recently become superconductors in their own right.

But it’s not the only over-achieving nanomaterial out there. Researchers have just simulated a stretched out, one-dimensional (1D) chain of boron, predicting that the material could have even weirder properties than graphene.

Continue reading “Scientists Simulate a New Material That Could Be Even Weirder Than Graphene” »

Feb 3, 2017

Scientists Have Turned Cooking Oil Into a Material 200 Times Stronger Than Steel

Posted by in categories: mobile phones, nanotechnology, particle physics, solar power, sustainability

Graphene cooking oil?


In Brief

  • Researchers have discovered a way to make soybean oil into the super-strong material graphene. The material has a wide variety of potential uses and can revolutionize electronics.
  • The material could be used to make cell phone batteries last 25 percent longer, make more effective solar cells, and even filter fuel out of air.

Researchers have found a way to turn cheap, everyday cooking oil into the wonder material graphene – a technique that could greatly reduce the cost of making the much-touted nanomaterial.

Continue reading “Scientists Have Turned Cooking Oil Into a Material 200 Times Stronger Than Steel” »

Feb 3, 2017

Neutrons reveal ‘quantum tunnelling’ on graphene enables the birth of stars

Posted by in categories: chemistry, nanotechnology, particle physics, quantum physics, space travel

Graphene is known as the world’s thinnest material due to its 2-D structure, in which each sheet is only one carbon atom thick, allowing each atom to engage in a chemical reaction from two sides. Graphene flakes can have a very large proportion of edge atoms, all of which have a particular chemical reactivity. In addition, chemically active voids created by missing atoms are a surface defect of graphene sheets. These structural defects and edges play a vital role in carbon chemistry and physics, as they alter the chemical reactivity of graphene. In fact, chemical reactions have repeatedly been shown to be favoured at these defect sites.

Interstellar molecular clouds are predominantly composed of hydrogen in molecular form (H2), but also contain a small percentage of dust particles mostly in the form of carbon nanostructures, called polyaromatic hydrocarbons (PAH). These clouds are often referred to as ‘star nurseries’ as their low temperature and high density allows gravity to locally condense matter in such a way that it initiates H fusion, the nuclear reaction at the heart of each star. Graphene-based materials, prepared from the exfoliation of graphite oxide, are used as a model of interstellar carbon dust as they contain a relatively large amount of , either at their edges or on their surface. These defects are thought to sustain the Eley-Rideal chemical reaction, which recombines two H into one H2 molecule.

The observation of interstellar clouds in inhospitable regions of space, including in the direct proximity of giant stars, poses the question of the origin of the stability of hydrogen in the molecular form (H2). This question stands because the clouds are constantly being washed out by intense radiation, hence cracking the hydrogen molecules into atoms. Astrochemists suggest that the chemical mechanism responsible for the recombination of atomic H into molecular H2 is catalysed by carbon flakes in interstellar clouds. Their theories are challenged by the need for a very efficient surface chemistry scenario to explain the observed equilibrium between dissociation and recombination. They had to introduce highly reactive sites into their models so that the capture of an atomic H nearby occurs without fail.

Continue reading “Neutrons reveal ‘quantum tunnelling’ on graphene enables the birth of stars” »

Feb 2, 2017

Viral protein transforms as it measures out DNA

Posted by in categories: biotech/medical, genetics, particle physics

To generate swarms of new viral particles, a virus hijacks a cell into producing masses of self-assembling cages that are then loaded with the genetic blueprint for the next infection. But the picture of how that DNA is loaded into those viral cages, or capsids, was blurry, especially for two of the most common types of DNA virus on earth, bacterial viruses and human herpesvirus. Jefferson researchers pieced together the three-dimensional atomic structure of a doughnut-shaped protein that acts like a door or ‘portal’ for the DNA to get in and out of the capsid, and have now discovered that this protein begins to transform its structure when it comes into contact with DNA. Their work published in Nature Communications.

“Researchers thought that the portal protein acts as an inert passageway for DNA,” says senior author Gino Cingolani, Ph.D., a Professor in the Department of Biochemistry and Molecular Biology at Thomas Jefferson University and researcher at the Sidney Kimmel Cancer Center. “We have shown that the portal is much more like a sensor that essentially helps measure out an appropriate length of DNA for each capsid particle, ensuring faithful production of new viral particles.”

The finding solves a longstanding puzzle in the field, and reveals a potential drug target for one of the most common human viral pathogens, herpesviruses, which is responsible for diseases such as chicken pox, mononucleosis, lymphomas and Kaposi sarcoma.

Read more

Feb 2, 2017

What Quantum Gravity Needs Is More Experiments

Posted by in categories: mathematics, particle physics, quantum physics

Agree; math is a must. However, experimentation is when the rubber meets the road.


In the mid-1990s, I studied mathematics. I wasn’t really sure just what I wanted to do with my life, but I was awed by the power of mathematics to describe the natural world. After classes on differential geometry and Lie algebras, I attended a seminar series offered by the math department about the greatest problem in fundamental physics: how to quantize gravity and thereby bring all the forces of nature under one theoretical umbrella. The seminars focused on a new approach pioneered by Abhay Ashtekhar at Penn State University. It wasn’t research I had previously encountered, and I came away with the impression that the problem had been solved; the news just hadn’t yet spread.

It seemed a clear victory for pure thought. The requirement of mathematical consistency also led, for example, to the discovery of the Higgs boson. Without the Higgs, the Standard Model of particle physics would stop working for particles that are collided at energies above 1 teraelectron-volts, well within the range of the Large Hadron Collider. Probabilities would no longer add to 100 percent and would cease to make mathematical sense. Something new thus had to turn up once that energy was crossed. The Higgs was the simplest possibility that physicists could think of—and, sure enough, they found it.

Continue reading “What Quantum Gravity Needs Is More Experiments” »

Feb 2, 2017

Scientists Have a Plan to Replace Fossil Fuels With Nuclear Fusion by 2030

Posted by in categories: nuclear energy, particle physics

Nuclear fusion is premised on building technology that would replicate the reaction that naturally powers our Sun — two light atoms, in this case, hydrogen, are fused together under extreme temperatures to produce another element, helium.

The process would release vast amounts of clean energy drawn from an almost limitless fuel source, with nearly zero carbon emissions.

However, it has yet to be done on a scale that would make it usable. Canadian scientists are hoping to change that, announcing plans to harness and develop nuclear fusion technology so they can deliver a working nuclear fusion plant prototype by 2030.

Continue reading “Scientists Have a Plan to Replace Fossil Fuels With Nuclear Fusion by 2030” »

Feb 1, 2017

Missouri S&T researcher works to develop nanodiamond materials

Posted by in categories: biotech/medical, chemistry, military, nanotechnology, particle physics

Nice.


When you think of diamonds, rings and anniversaries generally come to mind. But one day, the first thing that will come to mind may be bone surgery. By carefully designing modified diamonds at the nano-scale level, a Missouri University of Science and Technology researcher hopes to create multifunctional diamond-based materials for applications ranging from advanced composites to drug delivery platforms and biomedical imaging agents.

Dr. Vadym Mochalin, an associate professor of chemistry and materials science and engineering at Missouri S&T, is characterizing and modifying 5-nanometer nanodiamond particles produced from expired military grade explosives so that they can be developed to perform specific tasks. His current research studies their use as a filler in various types of composites.

Continue reading “Missouri S&T researcher works to develop nanodiamond materials” »

Feb 1, 2017

Coordinates of more than 23,000 atoms in technologically important material mapped

Posted by in categories: bioengineering, nanotechnology, particle physics, quantum physics

Nice read.


The results demonstrate that the positions of tens of thousands of atoms can be precisely identified and then fed into quantum mechanics calculations to correlate imperfections and defects with material properties at the single-atom level. This research will be published Feb 2. in the journal Nature.

Jianwei (John) Miao, a UCLA professor of physics and astronomy and a member of UCLA’s California NanoSystems Institute, led the international team in mapping the atomic-level details of the bimetallic nanoparticle, more than a trillion of which could fit within a grain of sand.

Continue reading “Coordinates of more than 23,000 atoms in technologically important material mapped” »

Feb 1, 2017

ORNL researchers break data transfer efficiency record

Posted by in categories: particle physics, quantum physics

My friends at ORNL just announced they broke a record in the transmittal of information via Qubits this week. We’re getting closer for our QC networking and storage capabilities.


OAK RIDGE, Tenn., Feb. 1, 2017 — Researchers at the Department of Energy’s Oak Ridge National Laboratory have set a new record in the transfer of information via superdense coding, a process by which the properties of particles like photons, protons and electrons are used to store as much information as possible.

The ORNL team transferred 1.67 bits per qubit, or quantum bit, over a fiber optic cable, edging out the previous record of 1.63 per qubit.

Continue reading “ORNL researchers break data transfer efficiency record” »