Menu

Blog

Archive for the ‘particle physics’ category: Page 488

Jan 10, 2017

2D materials enhance a 3D world

Posted by in categories: particle physics, solar power, sustainability

In the past decade, two-dimensional, 2D, materials have captured the fascination of a steadily increasing number of scientists. These materials, whose defining feature is having a thickness of only one to very few atoms, can be made of a variety of different elements or combinations thereof. Scientists’ enchantment with 2D materials began with Andre Geim and Konstantin Novoselov’s Nobel Prize winning experiment: creating a 2D material using a lump of graphite and common adhesive tape. This ingeniously simple experiment yielded an incredible material: graphene. This ultra-light material is roughly 200 times stronger than steel and is a superb conductor. Once scientists discovered that graphene had more impressive properties than its bulk component graphite, they decided to investigate other 2D materials to see if this was a universal property.

Christopher Petoukhoff, a Rutgers University graduate student working in the Femtosecond Spectroscopy Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), studies a 2D material, made of molybdenum disulfide (MoS2). His research focuses on the 2D material’s optoelectronic applications, or how the material can detect and absorb light. Optoelectronics are ubiquitous in today’s world, from the photodetectors in automatic doors and hand dryers, to solar cells, to LED lights, but as anyone who has stood in front of an automatic sink desperately waving their hands around to get it to work will tell you, there is plenty of room for improvement. The 2D MoS2 is particularly interesting for use in photodetectors because of its capability of absorbing the same amount of light as 50nm of the currently used silicon-based technologies, while being 70 times thinner.

Petoukhoff, under the supervision of Professor Keshav Dani, seeks to improve optoelectronic devices by adding a 2D layer of MoS2 to an organic semiconductor, which has similar absorption strengths as MoS2. The theory behind using both materials is that the interaction between the MoS2 layer and the organic semiconductor should lead to efficient charge transfer. Petoukhoff’s research, published in ACS Nano, demonstrates for the first time that charge transfer between these two layers occurs at an ultra-fast timescale, on the order of less than 100 femtoseconds, or one tenth of one millionth of one millionth of a second.

Read more

Jan 10, 2017

New active filaments mimic biology to transport nano-cargo

Posted by in categories: biotech/medical, nanotechnology, particle physics, robotics/AI

Very interesting read. The researchers created a completely artificial microscopic transport system mimicking the human body. With this technology we’re going to be able to address many areas of healthcare as well as some areas of AI.


Inspired by micro-scale motions of nature, a group of researchers at the Indian Institute of Technology Madras and the Institute of Mathematical Sciences, in Chennai, India, has developed a new design for transporting colloidal particles, tiny cargo suspended in substances such as fluids or gels, more rapidly than is currently possible by diffusion.

Fluid friction determines micro-scale inertia in fluid. This means, for instance, blood cells swimming within blood encounter roughly the same amount of drag that a human would experience attempting to swim through molasses.

Continue reading “New active filaments mimic biology to transport nano-cargo” »

Jan 9, 2017

Brian Greene: Time Travel is Possible

Posted by in categories: particle physics, time travel

Is the time we experience in our day-to-day lives real? Here, theoretical physicist Brian Green explores the potential particles of time and why we could, in theory, travel forward in time but not back.

Read more

Jan 8, 2017

Astronomers Have Discovered an Insane Galactic Particle Accelerator, Fuelled by a Black Hole

Posted by in categories: cosmology, particle physics

An international team of astronomers have discovered a ‘cosmic one-two punch’ in the night sky that has never been seen before. In one image, the team managed to spot a supermassive black hole and two gigantic galaxy clusters colliding at the same time.

Matter ejected from the black hole gets caught up inside the violent galactic collisions, turning this dynamic duo into one hell of an enormous cosmic particle accelerator.

“We have seen each of these spectacular phenomena separately in many places,” said team leader Reinout van Weeren, from the Harvard-Smithsonian Centre for Astrophysics.

Continue reading “Astronomers Have Discovered an Insane Galactic Particle Accelerator, Fuelled by a Black Hole” »

Jan 5, 2017

Researchers Build FIRST Reprogrammable Quantum Computer!

Posted by in categories: computing, information science, particle physics, quantum physics

Nice advancement this week in QC.


Researchers may have finally created the first fully reprogrammable quantum computer in the world. This changes the entire spectrum of the technology, as quantum computers so far could only run one type of equation.

This marks the beginning of reprogrammable quantum computers. Several teams and companies like IBM are still in the race towards quantum computing, which so far can only run one type of equation. This seems ironic as they can theoretically run more operations than there are atoms in the universe. But this stops now.

Continue reading “Researchers Build FIRST Reprogrammable Quantum Computer!” »

Jan 4, 2017

Harnessing the Power of Siberia: Physicists Creating Matter-Antimatter Collider

Posted by in category: particle physics

Physicists engaged in the construction of a nuclotron-based ion collider (NICA) facility in Dubna, outside Moscow plan to combine efforts to create of a unique electron positron collider at Novosibirsk’s Budker Institute of Nuclear Physics. Promoters say the project would allow Russia to take the lead in a very promising niche of particle physics.

Budker Institute of Nuclear Physics Deputy Director Yevgeny Levichev discussed Russian physicists’ ambitious plans with Russia’s RIA Novosti news agency on Tuesday.

The Institute plans to create the Super Tau Charm Factory, a particle accelerator which would study the collision of beams of electrons (matter) and positrons (antimatter) in an effort to help to identify phenomena and processes beyond the Standard Model of particle physics.

Continue reading “Harnessing the Power of Siberia: Physicists Creating Matter-Antimatter Collider” »

Jan 3, 2017

Physicists May Have Just Discovered A New Form Of Light

Posted by in category: particle physics

In Brief Scientists from the Imperial College have discovered that light could possibly exist in a previously unknown form, as a mix with a single electron. This interaction creates light that has the properties of both particles.

For something that seems so integral to our lives, we are still discovering many things about light. Its most fundamental properties still astound us, and its interactions with other particles are full of surprises. Case in point, scientists from the Imperial College in London seem to have just discovered a new form of light, one made by combining light with a single electron particle.

Continue reading “Physicists May Have Just Discovered A New Form Of Light” »

Dec 28, 2016

Stanford scientists see big potential for tiny wires

Posted by in category: particle physics

More proof about diamonds around QC.


Creation of impossibly thin wires just three atoms wide opens up new possibilities in a variety of fields.

Read more

Dec 28, 2016

Testing Predictions of the Quantum Landscape Multiverse 2: The Exponential Inflationary Potential [CEA]

Posted by in categories: cosmology, particle physics, quantum physics

The 2015 Planck data release tightened the region of the allowed inflationary models. Inflationary models with convex potentials have now been ruled out since they produce a large tensor to scalar ratio. Meanwhile the same data offers interesting hints on possible deviations from the standard picture of CMB perturbations. Here we revisit the predictions of the theory of the origin of the universe from the landscape multiverse for the case of exponential inflation, for two reasons: firstly to check the status of the anomalies associated with this theory, in the light of the recent Planck data; secondly, to search for a counterexample whereby new physics modifications may bring convex inflationary potentials, thought to have been ruled out, back into the region of potentials allowed by data. Using the exponential inflation as an example of convex potentials, we find that the answer to both tests is positive: modifications to the perturbation spectrum and to the Newtonian potential of the universe originating from the quantum entanglement, bring the exponential potential, back within the allowed region of current data; and, the series of anomalies previously predicted in this theory, is still in good agreement with current data. Hence our finding for this convex potential comes at the price of allowing for additional thermal relic particles, equivalently dark radiation, in the early universe.

Read this paper on arXiv…

E. Valentino and L. Mersini-Houghton Wed, 28 Dec 16 26/46.

Continue reading “Testing Predictions of the Quantum Landscape Multiverse 2: The Exponential Inflationary Potential [CEA]” »

Dec 26, 2016

Self-Assembly Process Strikes Perfect Balance for Making Atoms-Wide Nanowires

Posted by in categories: nanotechnology, particle physics

Nice.


Diamondoids build smallest possible copper-sulfur nanowires, could construct many other nanomaterials.

Read more