Menu

Blog

Archive for the ‘materials’ category: Page 9

May 14, 2024

Tensor network decompositions for absolutely maximally entangled states

Posted by in categories: materials, quantum physics

Balázs Pozsgay and Ian M. Wanless, Quantum 8, 1339 (2024). Absolutely maximally entangled (AME) states of $k$ qudits (also known as perfect tensors) are quantum states that have maximal entanglement for all possible bipartitions of the sites/parties. We consider the problem of whether such states can be decomposed into a tensor network with a small number of tensors, such that all physical and all auxiliary spaces have the same dimension $D$. We find that certain AME states with $k=6$ can be decomposed into a network with only three 4-leg tensors; we provide concrete solutions for local dimension $D=5$ and higher. Our result implies that certain AME states with six parties can be created with only three two-site unitaries from a product state of three Bell pairs, or equivalently, with six two-site unitaries acting on a product state on six qudits. We also consider the problem for $k=8$, where we find similar tensor network decompositions with six 4-leg tensors.

May 14, 2024

Scientists create green composite material from Japanese washi paper

Posted by in categories: habitats, materials

Washi: the traditional Japanese paper, known for its beauty and strength, has been used in bookbinding, art, furniture, and architecture for hundreds of years. But, more recently, washi’s usage is on the decline, as people opt for more western style housing designs.

May 14, 2024

Electron vortices in graphene detected for the first time

Posted by in categories: materials, particle physics

When an ordinary electrical conductor—such as a metal wire—is connected to a battery, the electrons in the conductor are accelerated by the electric field created by the battery. While moving, electrons frequently collide with impurity atoms or vacancies in the crystal lattice of the wire, and convert part of their motional energy into lattice vibrations. The energy lost in this process is converted into heat that can be felt, for example, by touching an incandescent light bulb.

May 14, 2024

Physicists create five-lane superhighway for electrons

Posted by in categories: materials, physics

MIT physicists and colleagues have created a five-lane superhighway for electrons that could allow ultra-efficient electronics and more. The work, reported in the May 9 issue of Science, is one of several important discoveries by the same team over the last year involving a material that is essentially a unique form of pencil lead.

May 14, 2024

This discovery could lead to creation of credit card-sized smartphones

Posted by in categories: materials, mobile phones

A materials breakthrough could lead to radically smaller phones that are more powerful and energy-efficient.

May 13, 2024

Robust superconductivity in magic-angle multilayer graphene family

Posted by in category: materials

😗Year 2022


Superconductivity is reported in magic-angle twisted four-layer and five-layer graphene systems. While they find that all magic-angle graphene systems fit into a unified hierarchy of systems that share a set of flat bands in their electronic band structures, they also report that there is a key distinction between magic-angle twisted bilayer graphene and the other family members, related to the difference in the way the electrons move between the layers in a magnetic field.

May 11, 2024

The material difference: How biomaterials are reshaping medicine and patient outcomes

Posted by in categories: biotech/medical, materials

This biomaterials Insights Report explores eight key areas transforming healthcare with self-healing implants, targeted drug delivery, and more.

May 10, 2024

Scientists Discover First-of-Its-Kind Molecule That Absorbs Greenhouse Gasses

Posted by in categories: materials, sustainability

A ‘cage of cages’ is how scientists have described a new type of porous material, unique in its molecular structure, that could be used to trap carbon dioxide and another, more potent greenhouse gas.

Synthesized in the lab by researchers in the UK and China, the material is made in two steps, with reactions assembling triangular prism building blocks into larger, more symmetrical tetrahedral cages – producing the first molecular structure of its kind, the team claims.

The resulting material, with its abundance of polar molecules, attracts and holds greenhouse gasses such as carbon dioxide (CO2) with strong affinity. It also showed excellent stability in water, which would be critical for its use in capturing carbon in industrial settings, from wet or humid gas streams.

May 10, 2024

MIT 6.S191: Recurrent Neural Networks, Transformers, and Attention

Posted by in categories: materials, robotics/AI

Borophene is already thinner and more conductive than graphene, and scientists have altered it to make it even more special.

May 10, 2024

Wonder material “more remarkable” than graphene has medical potential

Posted by in categories: biotech/medical, materials

Borophene is already thinner and more conductive than graphene, and scientists have altered it to make it even more special.

Page 9 of 275First678910111213Last