Menu

Blog

Archive for the ‘materials’ category: Page 226

Feb 28, 2019

Hall effect becomes viscous in graphene

Posted by in category: materials

Researchers at The University of Manchester in the UK have discovered that the Hall effect—a phenomenon well known for more than a century—is no longer as universal as it was thought to be.

In the research paper published in Science this week, the group led by Prof Sir Andre Geim and Dr. Denis Bandurin found that the Hall effect can even be signifcantly, if strongly interact with each other giving rise to a viscous flow. The new phenomenon is important at —something that can have important implications for when making electronic or .

Just like molecules in gases and liquids, electrons in solids frequently collide with each other and can thus behave like viscous fluids too. Such electron fluids are ideal to find new behaviours of materials in which are particularly strong. The problem is that most materials are rarely pure enough to allow electrons to enter the viscous regime. This is because they contain many impurities off which electrons can scatter before they have time to interact with each other and organise a viscous flow.

Read more

Feb 28, 2019

Hybrid material may outperform graphene in several applications

Posted by in categories: computing, materials

“A structure comprising a molybdenum disulfide monolayer on an azobenzene substrate could be used to build a highly compactable and malleable quasi-two-dimensional transistor powered by light.”

Journal Publication: https://journals.aps.org/…/abstr…/10.1103/PhysRevB.98.

Read more

Feb 25, 2019

Superintelligence as a Service is Coming and It Can Be Safe AGI

Posted by in categories: materials, robotics/AI

Drexler and the Oxford Future of Humanity Institute proposing that artificial intelligence is mainly emerging as cloud-based AI services and a 210-page paper analyzes how AI is developing today.

AI development is developing automation of many tasks and automation of AI research and development will enable acceleration of AI improvement.

Accelerated AI improvement would mean the emergence of asymptotically comprehensive, superintelligent-level AI services that—crucially—can include the service of developing new services, both narrow and broad, guided by concrete human goals and informed by strong models of human (dis)approval. The concept of comprehensive AI services (CAIS) provides a model of flexible, general intelligence in which agents are a class of service-providing products, rather than a natural or necessary engine of progress in themselves.

Continue reading “Superintelligence as a Service is Coming and It Can Be Safe AGI” »

Feb 25, 2019

A New Way to See Magnetic Fields

Posted by in category: materials

Using neutrons, materials scientists develop a method that goes below the surface.

Read more

Feb 25, 2019

US Military Files Patent for Room-Temperature Superconductor

Posted by in categories: materials, military

Researchers have been on the hunt for a superconductor that would work at around room temperature, which they consider to be 25 degrees Celsius (77 degrees Fahrenheit) — and according to the patent application, Navy researcher Salvatore Cezar Pais thinks he’s figured it out.

Pais’ application describes a wire consisting of a metal coating over an insulator core. An electromagnetic coil surrounds the wire, and when activated by a pulsed current, this coil causes a vibration that allows the wire to act as a superconductor at room temperature, according to the application.

Read more

Feb 24, 2019

New material could ‘drive wound healing’ using the body’s inbuilt healing system

Posted by in categories: biotech/medical, materials

Imperial researchers have developed a new bioinspired material that interacts with surrounding tissues to promote healing.

Materials are widely used to help heal wounds: Collagen sponges help treat burns and pressure sores, and scaffold-like implants are used to repair broken bones. However, the process of tissue repair changes over time, so scientists are looking to biomaterials that interact with tissues as healing takes place.

Continue reading “New material could ‘drive wound healing’ using the body’s inbuilt healing system” »

Feb 23, 2019

Scientists Develop a Material That Kills 99.9% of Bacteria in Drinking Water Using Nothing But Light

Posted by in categories: materials, sustainability

Ingenius.


Researchers in China have developed a new way to remove bacteria from water that they say is both highly efficient and environmentally sound.

By shining ultraviolet light onto a two-dimensional sheet of a compound called graphitic carbon nitride, the team’s prototype can purify 10 litres (2.6 liquid gallons) of water in just one hour, killing virtually all the harmful bacteria present.

Continue reading “Scientists Develop a Material That Kills 99.9% of Bacteria in Drinking Water Using Nothing But Light” »

Feb 22, 2019

Navy files for patent on room-temperature superconductor

Posted by in categories: computing, materials

A scientist working for the U.S. Navy has filed for a patent on a room-temperature superconductor, representing a potential paradigm shift in energy transmission and computer systems.

Salvatore Cezar Pais is listed as the inventor on the Navy’s patent application made public by the U.S. Patent and Trademark Office on Thursday.

The application claims that a room-temperature superconductor can be built using a wire with an insulator core and an aluminum PZT (lead zirconate titanate) coating deposited by vacuum evaporation with a thickness of the London penetration depth and polarized after deposition.

Continue reading “Navy files for patent on room-temperature superconductor” »

Feb 21, 2019

“Extreme Relic”–Merging Black Holes Illuminated

Posted by in categories: cosmology, materials

In the nearby Whirlpool galaxy and its companion galaxy, M51b, two supermassive black holes heat up and devour surrounding material. These two monsters should be the most luminous X-ray sources in sight, but a new study using observations from NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array) mission shows that a much smaller object is competing with the two behemoths.

The most stunning features of the Whirlpool galaxy – officially known as M51a – are the two long, star-filled “arms” curling around the galactic center like ribbons. The much smaller M51b clings like a barnacle to the edge of the Whirlpool. Collectively known as M51, the two galaxies are merging.

At the center of each galaxy is a supermassive black hole millions of times more massive than the Sun. The galactic merger should push huge amounts of gas and dust into those black holes and into orbit around them. In turn, the intense gravity of the black holes should cause that orbiting material to heat up and radiate, forming bright disks around each that can outshine all the stars in their galaxies.

Continue reading “‘Extreme Relic’--Merging Black Holes Illuminated” »

Feb 21, 2019

Self-healing, flexible electronic material restores functions after many breaks

Posted by in categories: materials, wearables

Circa 2016


UNIVERSITY PARK, Pa. — Electronic materials have been a major stumbling block for the advance of flexible electronics because existing materials do not function well after breaking and healing. A new electronic material created by an international team, however, can heal all its functions automatically even after breaking multiple times. This material could improve the durability of wearable electronics.

Continue reading “Self-healing, flexible electronic material restores functions after many breaks” »