Menu

Blog

Archive for the ‘engineering’ category: Page 73

Oct 11, 2022

Aram Kradjian — Director, Research & Innovation, Jaguar Land Rover — Reimagining Future Of Mobility

Posted by in categories: engineering, government

Is Director, Research & Innovation, at Jaguar Land Rover (https://www.jaguarlandrover.com/innovation), where he is focused on heading the global research department, spearheading cutting edge research (collaborating with the tech industry, government, regulators and academia), as well as product design, innovation, and strategy, helping to drive the latest technologies and innovations into their products and services.

Aram also serves as a Visiting Professor in Technology Innovation at King’s College London.

Continue reading “Aram Kradjian — Director, Research & Innovation, Jaguar Land Rover — Reimagining Future Of Mobility” »

Oct 10, 2022

New system retrofits diesel engines to run on 90% hydrogen

Posted by in categories: energy, engineering, food, transportation

Engineers from UNSW Sydney have successfully converted a diesel engine to run as a hydrogen-diesel hybrid engine—reducing CO2 emissions by more than 85% in the process.

The team, led by Professor Shawn Kook from the School of Mechanical and Manufacturing Engineering, spent around 18 months developing the hydrogen-diesel direct injection dual-fuel system that means existing diesel engines can run using 90% hydrogen as fuel.

The researchers say that any diesel engine used in trucks and power equipment in the transportation, agriculture and mining industries could ultimately be retrofitted to the new hybrid system in just a couple of months.

Oct 7, 2022

New form of silicon could revolutionize semiconductor industry

Posted by in categories: engineering, nanotechnology

After a 10-year research study that started by accident and was met with skepticism, a team of Northeastern University mechanical engineers was able to synthesize highly dense, ultra-narrow silicon nanowires that could revolutionize the semiconductor industry. Their research appears in Nature Communications.

Yung Joon Jung, Northeastern professor of mechanical and industrial engineering, says it might have been his favorite research project.

“Everything is new, and it required a lot of perseverance,” says Jung, who specializes in engineering and application of nanostructure systems and previously studied carbon nanotubes.

Oct 7, 2022

Light-based therapy weakens antibiotic-resistant bacteria

Posted by in categories: biotech/medical, chemistry, engineering

Antibiotics are standard treatments for fighting dangerous bacterial infections. Yet the number of bacteria developing a resistance to antibiotics is increasing. Researchers from Texas A&M University and the University of São Paulo are overcoming this resistance with light.

The researchers tailored antimicrobial (aPDT)—a chemical reaction triggered by visible light—for use on strains. Results showed the treatment weakened to where low doses of current antibiotics could effectively eliminate them.

“Using aPDT in combination with antibiotics creates a synergy of interaction working together for a solution,” said Vladislav Yakovlev, University Professor in the Department of Biomedical Engineering at Texas A&M and co-director of the project. “It’s a step in the right direction against resistant bacteria.”

Oct 5, 2022

New cleaning technique boosts electronic and photonic prospects of aluminum nitride

Posted by in categories: computing, engineering

A group of researchers led by Cornell is unlocking the full potential of aluminum nitride—an important material for the advancement of electronics and photonics—thanks to the development of a surface cleaning technique that enables high-quality production.

The research was published Sept. 9 in the journal Science Advances. Graduate student Zexuan Zhang and research associate Yongjin Cho are the lead authors. The senior authors are Debdeep Jena and Huili Grace Xing, both professors of materials science and engineering and of electrical and computer engineering.

Aluminum nitride has gained significant research interest in the field of semiconductor materials as it provides an unmatched combination of high electrical resistivity and thermal conductivity, according to Zhang. The ceramic material is used as an electrically-insulating but thermally-conducting barrier in electronic devices, and due to its ability to operate at deep UV frequencies, it has great potential for use in light-emitting diodes and lasers.

Oct 5, 2022

Researchers pioneer nanoprinting electrodes for customized treatments of neurological disorders

Posted by in categories: 3D printing, biotech/medical, computing, engineering, nanotechnology, neuroscience

Carnegie Mellon University researchers have pioneered the CMU Array—a new type of microelectrode array for brain computer interface platforms. It holds the potential to transform how doctors are able to treat neurological disorders.

The ultra-high-density microelectrode (MEA), which is 3D-printed at the nanoscale, is fully customizable. This means that one day, patients suffering from epilepsy or limb function loss due to stroke could have personalized medical treatment optimized for their individual needs.

Continue reading “Researchers pioneer nanoprinting electrodes for customized treatments of neurological disorders” »

Oct 5, 2022

3D-printed, ultra-strong and ductile alloys form nanostructures

Posted by in categories: engineering, nanotechnology

Additive manufacturing techniques used to produce metal alloys have gained popularity due to their ability to be fabricated in complex shapes for use in various engineering applications. Yet the majority of studies conducted have centered around developing single-phase materials.

Dr. Kelvin Xie’s team in the Department of Materials Science and Engineering at Texas A&M University employed advanced characterization techniques to reveal the microstructure of the 3D-printed dual-phase multi-principal elements, also known as (HEAs), that display ultra-strong and ductile properties. This work is a collaboration with Dr. Wen Chen from the University of Massachusetts at Amherst and Dr. Ting Zhu from the Georgia Institute of Technology.

This study was recently published in Nature.

Oct 2, 2022

Princeton physicists make plasma confinement breakthrough

Posted by in categories: engineering, particle physics, space

Physicists at the Princeton Plasma Physics Laboratory (PPPL) have proposed that the formation of “hills and valleys” in magnetic field lines could be the source of sudden collapses of heat ahead of disruptions that can damage doughnut-shaped tokamak fusion facilities. Their discovery could help overcome a critical challenge facing such facilities.

The research, published in a Physics of Plasmas paper in July, traced the collapse to the 3D disordering of the strong magnetic fields used to contain the hot, charged plasma gas. “We proposed a novel way to understand the [disordered] field lines, which was usually ignored or poorly modelled in the previous studies,” said Min-Gu Yoo, a post-doctoral researcher at PPPL and lead author of the paper.

Fusion is the process that powers the Sun and stars as hydrogen atoms fuse together to form helium, and matter is converted into energy. Capturing the process on Earth could create a clean, carbon-free and almost inexhaustible source of power to generate electricity, but comes with many engineering challenges: in stars, massive gravitational forces create the right conditions for fusion. On Earth those conditions are much harder to achieve.

Sep 30, 2022

‘Love hormone’ is revealed to have heart healing properties

Posted by in categories: biotech/medical, engineering, health, sex

The neurohormone oxytocin is well-known for promoting social bonds and generating pleasurable feelings, for example from art, exercise, or sex. But the hormone has many other functions, such as the regulation of lactation and uterine contractions in females, and the regulation of ejaculation, sperm transport, and testosterone production in males.

Now, researchers from Michigan State University show that in zebrafish and human cell cultures, oxytocin has yet another unsuspected function: It stimulates derived from the heart’s outer layer (epicardium) to migrate into its middle layer (myocardium) and there develop into cardiomyocytes, that generate heart contractions. This discovery could one day be used to promote the regeneration of the human heart after a . The results are published in Frontiers in Cell and Developmental Biology.

“Here we show that oxytocin, a neuropeptide also known as the love hormone, is capable of activating heart repair mechanisms in injured hearts in zebrafish and human cell cultures, opening the door to potential new therapies for heart regeneration in humans,” said Dr. Aitor Aguirre, an assistant professor at the Department of Biomedical Engineering of Michigan State University, and the study’s senior author.

Sep 29, 2022

Dr. Doris A. Taylor, Ph.D. — CEO, Organamet Bio Inc. — Personalized Bio-Engineered Human Hearts

Posted by in categories: chemistry, engineering, life extension, sex

Personalized Bio-Engineered Human Hearts For All — Dr. Doris A. Taylor, Ph.D., CEO, Organamet Bio Inc.


Dr. Doris A. Taylor, Ph.D. is Chief Executive Officer of Organamet Bio Inc. (https://organametbio.com/) an early phase start-up committed to saving lives and reducing the cost of healthcare for those with heart disease. Organamet has a goal is to make personalized bio-engineered human hearts, available to all who need them, within 5 years, increasing availability and access to hearts, decreasing or eliminating need for immunosuppression, reducing total lifetime transplant costs, and improving quality of life.

Continue reading “Dr. Doris A. Taylor, Ph.D. — CEO, Organamet Bio Inc. — Personalized Bio-Engineered Human Hearts” »

Page 73 of 255First7071727374757677Last