Menu

Blog

Archive for the ‘chemistry’ category: Page 10

Jul 22, 2024

New Study confirms Forever Chemicals are Absorbed through Human Skin

Posted by in categories: chemistry, government

A study of 17 commonly used synthetic ‘forever chemicals’ has shown that these toxic substances can readily be absorbed through human skin.

New research, published today in Environment International proves for the first time that a wide range of PFAS (perfluoroalkyl substances) — chemicals which do not break down in nature – can permeate the skin barrier and reach the body’s bloodstream.

PFAS are used widely in industries and consumer products from school uniforms to personal care products because of their water and stain repellent properties. While some substances have been banned by government regulation, others are still widely used and their toxic effects have not yet been fully investigated.

Jul 22, 2024

Gold co-catalyst improves photocatalytic degradation of micropollutants, finds study

Posted by in categories: chemistry, nanotechnology

To remove micropollutants such as pesticides and trace chemicals from the environment, you need something equally small and cunning. One potential method is photocatalysis, which uses semiconducting nanomaterials powered by sunlight to adsorb toxic chemicals on the materials’ surface and degrade them.

Jul 21, 2024

Machine learning unlocks secrets to advanced alloys

Posted by in categories: chemistry, particle physics, robotics/AI

The concept of short-range order (SRO)—the arrangement of atoms over small distances—in metallic alloys has been underexplored in materials science and engineering. But the past decade has seen renewed interest in quantifying it, since decoding SRO is a crucial step toward developing tailored high-performing alloys, such as stronger or heat-resistant materials.

Understanding how atoms arrange themselves is no easy task and must be verified using intensive lab experiments or based on imperfect models. These hurdles have made it difficult to fully explore SRO in .

But Killian Sheriff and Yifan Cao, graduate students in MIT’s Department of Materials Science and Engineering (DMSE), are using to quantify, atom by atom, the complex chemical arrangements that make up SRO. Under the supervision of Assistant Professor Rodrigo Freitas, and with the help of Assistant Professor Tess Smidt in the Department of Electrical Engineering and Computer Science, their work was recently published in Proceedings of the National Academy of Sciences.

Jul 21, 2024

NVIDIA is set to fully transition to open-source GPU kernels with the R560 drivers

Posted by in categories: chemistry, computing, engineering, sustainability

A team of researchers, affiliated with UNIST has made a significant breakthrough in developing an eco-friendly dry electrode manufacturing process for lithium-ion batteries (LIBs). The new process, which does not require the use of harmful solvents, enhances battery performance while promoting sustainability.

The findings of this research have been published in the July 2024 issue of Chemical Engineering Journal.

Led by Professor Kyeong-Min Jeong in the School of Energy and Chemical Engineering at UNIST, the research team has introduced a novel solvent-free dry electrode process using polytetrafluoroethylene (PTFE) as a binder. This innovative approach addresses the challenges associated with traditional wet-electrode manufacturing methods, which often result in non-uniform distribution of binders and conductive materials, leading to performance degradation.

Jul 19, 2024

A microscopic factory for small runners: New method uses magnetic loops for growth control

Posted by in categories: biotech/medical, chemistry

Researchers at the University of Bayreuth have developed a new method for controlling the growth of physical micro-runners. They used an external magnetic field to assemble paramagnetic colloidal spheres—i.e. only magnetic due to external influences—into rods of a certain length. Colloidal particles are tiny particles in the micro-or nanometer range that can be used in medicine as carriers of biochemicals.

Jul 18, 2024

High-speed camera for molecules: Entangled photons enable Raman spectroscopy

Posted by in categories: biotech/medical, chemistry, quantum physics

Conversely, stimulated Raman spectroscopy represents a modern analytical method used to study molecular vibrational properties and interactions, offering valuable insights into molecular fine structure. Its applications span various domains, including , biomedical research, materials science, and environmental monitoring.

By combining these two techniques, an exceptionally powerful analytical tool for studying complex molecular materials emerges.

In a new paper published in Light: Science & Applications, a team of scientists, led by Professor Zhedong Zhang and Professor Zhe-Yu Ou from Department of Physics, City University of Hong Kong, Hong Kong, China, developed a microscopic theory for the ultrafast stimulated Raman spectroscopy with quantum-light fields.

Jul 18, 2024

Paving the way to extremely fast, compact computer memory

Posted by in categories: chemistry, computing, quantum physics

For decades, scientists have been studying a group of unusual materials called multiferroics that could be useful for a range of applications including computer memory, chemical sensors and quantum computers.

Jul 17, 2024

Revolutionizing H2O2 Production: Ultrathin Nanosheets Show Immense Promise

Posted by in categories: chemistry, energy

Recent research has demonstrated the effectiveness of ultrathin Bi4O5Br2 nanosheets with controlled oxygen vacancies in enhancing the piezocatalytic production of hydrogen peroxide (H2O2), presenting a viable, environmentally friendly alternative to traditional methods.

Hydrogen peroxide (H2O2) serves as a crucial chemical raw material with extensive applications in numerous industrial and everyday contexts. However, the industrial anthraquinone method of producing H2O2 is fraught with significant drawbacks, including high levels of pollution and energy consumption. An alternative approach involves harnessing ubiquitous mechanical energy for piezocatalytic H2O2 evolution, which offers a promising strategy. Despite its potential, this method faces challenges due to its unsatisfactory energy conversion efficiency.

Bi4O5Br2 is regarded as a highly attractive photocatalytic material due to its unique sandwich structure, excellent chemical stability, good visible light capture ability, and suitable band structure. Aspired by its non-centrosymmetric crystal structure, piezoelectric performance has begun to enter the vision of researchers recently. However, its potential as an efficient piezocatalyst is far from being exploited, especially since the impacts of defects on piezocatalysis and piezocatalytic H2O2 production over Bi4O5Br2 remains scanty. Thus, mechanical energy-driven piezocatalysis provides a promising method for H2O2 synthesis from pure water with great attraction.

Jul 16, 2024

Researchers Create New Class of Materials called ‘Glassy Gels’

Posted by in categories: chemistry, engineering, transportation

Researchers have created a new class of materials called “glassy gels” that are very hard and difficult to break despite containing more than 50% liquid. Coupled with the fact that glassy gels are simple to produce, the material holds promise for a variety of applications.

Gels and glassy polymers are classes of materials that have historically been viewed as distinct from one another. Glassy polymers are hard, stiff and often brittle. They’re used to make things like water bottles or airplane windows. Gels – such as contact lenses – contain liquid and are soft and stretchy.

“We’ve created a class of materials that we’ve termed glassy gels, which are as hard as glassy polymers, but – if you apply enough force – can stretch up to five times their original length, rather than breaking,” says Michael Dickey, corresponding author of a paper on the work and the Camille and Henry Dreyfus Professor of Chemical and Biomolecular Engineering at North Carolina State University. “What’s more, once the material has been stretched, you can get it to return to its original shape by applying heat. In addition, the surface of the glassy gels is highly adhesive, which is unusual for hard materials.”

Jul 15, 2024

Caught in the actinium: New research could help design better cancer treatments

Posted by in categories: biotech/medical, chemistry

The element actinium was first discovered at the turn of the 20th century, but even now, nearly 125 years later, researchers still don’t have a good grasp on the metal’s chemistry. That’s because actinium is only available in extremely small amounts and working with the radioactive material requires special facilities. But to improve emerging cancer treatments using actinium, researchers will need to better understand how the element binds with other molecules.

Page 10 of 327First7891011121314Last