Toggle light / dark theme

Tesla is now starting to account for “battery age” in its estimated range calculation for its electric vehicles.

I have long been advocating for prioritizing accurate range prediction over a longer range in curbing range anxiety.

Don’t get me wrong, a longer range can be useful, but if you know what where you are going, the main thing is that you know you can get there and your range doesn’t start dropping faster than anticipated.

Gotham City’s Dark Knight boasts an impressive collection of technological marvels, but the superhero scientists at the U.S. Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL) have cutting-edge capabilities of their own.

A recent battery manufacturing project—affectionately called BatMan —has developed a novel laser patterning process to alter the microstructure of battery electrode materials. Funded by DOE’s Advanced Materials and Manufacturing Technologies Office, this project brings together expert minds from NREL, Clarios, Amplitude Laser Group, and Liminal Insights. This revolutionized manufacturing process could unlock significant improvements to electrified transportation, leading the charge toward a brighter and more sustainable future.

“BatMan builds on NREL’s expertise using laser ablation, advanced computational models, and materials characterization to address key challenges in battery manufacturing,” said Bertrand Tremolet de Villers, project co-lead and senior scientist in NREL’s Thin Film and Manufacturing Sciences group. “This new, high-throughput laser patterning process—demonstrated at scale with state-of-the-art roll-to-roll manufacturing techniques—uses laser pulses to quickly and precisely modify and optimize electrode structures, offering a massive leap in battery capabilities with minimal added manufacturing cost.”

Independent of the smart-corridor project, two major companies behind self-driving big rig technology told KXAN they plan to remove safety drivers and go completely driverless by the end of the year.

A spokesperson for the California-based company Kodiak Robotics told KXAN it started operating self-driving big rigs on routes around Texas in 2019, always with backup safety drivers.

In that time, “the bulk of Kodiak’s deliveries have been between our Dallas operations hub and Houston, Austin, San Antonio, Oklahoma City, and Atlanta,” Kodiak spokesman Daniel Goff said.

Just like smartphone GPS has harmed our sense of spatial cognition and memory, artificial intelligence may soon impair our ability to make decisions for ourselves — an outcome that would be, one expert warns, “catastrophic.”

In an interview with PsyPost, neuropsychology expert Umberto León Domínguez of the University of Monterrey in Mexico said that his new research shows that AI chatbots may end up not just mimicking our speech patterns, but significantly harming our cognitive functioning in general.

Like many other educators, Domínguez said he’s concerned about how his students are using tools like OpenAI’s ChatGPT. Spurred by those concerns, he told PsyPost, he began to explore ways AI chatbots “could interfere with higher-order executive functions to understand how to also train these skills.”

Futuristic advancements in AI and healthcare stole the limelight at the tech extravaganza Consumer Electronics Show (CES) 2024. However, battery technology is the game-changer at the heart of these innovations, enabling greater power efficiency. Importantly, electric vehicles are where this technology is being applied most intensely. Today’s EVs can travel around 700km on a single charge, while researchers are aiming for a 1,000km battery range. Researchers are fervently exploring the use of silicon, known for its high storage capacity, as the anode material in lithium-ion batteries for EVs. However, despite its potential, bringing silicon into practical use remains a puzzle that researchers are still working hard to piece together.

Enter Professor Soojin Park, PhD candidate Minjun Je, and Dr. Hye Bin Son from the Department of Chemistry at Pohang University of Science and Technology (POSTECH). They have cracked the code, developing a pocket-friendly and rock-solid next-generation high-energy-density Li-ion battery system using micro silicon particles and gel polymer electrolytes. This work was published on the online pages of Advanced Science on the 17th of January.

Employing silicon as a battery material presents challenges: It expands by more than three times during charging and then contracts back to its original size while discharging, significantly impacting battery efficiency. Utilizing nano-sized silicon (10-9m) partially addresses the issue, but the sophisticated production process is complex and astronomically expensive, making it a challenging budget proposition. By contrast, micro-sized silicon (10-6m) is superbly practical in terms of cost and energy density. Yet, the expansion issue of the larger silicon particles becomes more pronounced during battery operation, posing limitations for its use as an anode material.