Toggle light / dark theme

One Apple analyst says that it’s “very likely” the company is working on a head-up display (HUD) for car windshields. The technology, which is currently used in jets, would project icons and information onto the windshield, according to the Washington Post.

Global Equities Research analyst Trip Chowdhry said that the launch of the device is “not imminent,” and he seems to be the only analyst predicting Apple’s entry into the head-up display space. Plus, Chowdhry has frequently read Apple’s tea leaves inaccurately.

Disclaimers aside, it’s not entirely unlikely that Apple is developing a high-tech answer to the distracting nature of a car dashboard. Apple does seem to be developing an all-electric minivan that may be self-driving under the codename “Project Titan,” according to reports by the Wall Street Journal. And since HUDs on windshields are already being touted by the auto industry as the next big thing, it’s reasonable Apple would want the technology in its potential car.

Read more

1. Silicon technology has taken humanity a long way forward from 1947 when the first transistor was invented by the Nobel prize winners Shockley, Bardeen & Brattain.

2. From smart mobile telephones we rely on to the sophisticated satellite navigation systems guiding our cars, a lot of techno-magic we see around us is a result of our ability to scale silicon-tech that turns hitherto science fiction into everyday reality at affordable prices.

3. All the Nobel laureates, scientists and engineers we liaise with at Quantum Innovation Labs http://QiLabs.net collectively realise the end of the silicon-scaling era is coming to end as the Moore’s Law era for Silicon-based computers finally concludes.

Read more

Today, Toyota announced that it has hired Gill Pratt to drive its autonomous car research. Pratt is best known in this field for his work at DARPA and MIT, including starting the Robotics Challenge. The company is also investing $50 million in the research over the next five years as well as partnering with MIT and Stanford.

AAEAAQAAAAAAAAKxAAAAJDI5YjM4ZWM1LTFmOTgtNGEwNS04YmM3LTNiMWI4NmJiMjY2MQPratt has spent the past five years with DARPA, and laid out what’s important for Toyota at an event in Palo Alto today: “Our long-term goal is to make a car that is never responsible for a crash.”

Pratt will serve as Toyota’s “Executive Technical Advisor” on the research.

Read more

A few lines in a seemingly routine RAND Corp. report on the future of technology and law enforcement last week raised a provocative question: Should police have the power to take control of a self-driving car?

Human drivers are required to pull over when a police officer gestures for them to do so. It’s reasonable to expect that self-driving cars would do the same. To look at it another way: Self-driving cars are programmed to stop at red lights and stop signs. Surely they should also be programmed to stop when a police officer flags them down. It is, after all, the law.

It’s clear, then, that police officers should have some power over the movements of self-driving cars. What’s less clear is where to draw the line. If a police officer can command a self-driving car to pull over for his own safety and that of others on the road, can he do the same if he suspects the passenger of a crime? And what if the passenger doesn’t want the car to stop—can she override the command, or does the police officer have ultimate control? – Slate, Aug. 24, 2015

Our view of civil rights has to evolve as technology changes our lives. More often than not, the changes are for the worse. Fifty years ago, could the police enter your home without a warrant and review your family photos for criminal evidence? No, and they still can’t today – though, of course, we know they do. However, they can order Facebook to give them access to photos you shared only with your selected friends.

Read more

A small, Santa Fe, New Mexico-based company called Knowm claims it will soon begin commercializing a state-of-the-art technique for building computing chips that learn. Other companies, including HP HPQ and IBM IBM, have already invested in developing these so-called brain-based chips, but Knowm says it has just achieved a major technological breakthrough that it should be able to push into production hopefully within a few years.

The basis for Knowm’s work is a piece of hardware called a memristor, which functions (warning: oversimplification coming) by mimicking synapses in the brain. Rather than committing certain information to a software program and traditional computing memory, memristors are able to “learn” by strengthening the electrical charge between two resistors (the “ristor” part of memristor) much like synapses strengthen connections between commonly used neurons in the brain.

Done correctly—and this is the result that HP and IBM are after—memristors can make computer chips much smarter, but also very energy efficient. That could mean data centers that don’t use as much energy as small towns, as well as more viable robotics, driverless cars, and other autonomous devices. Alex Nugent, Knowm’s founder and CEO, says memristors—especially the ones his company is working on—offer “a massive leap in efficiency” over traditional CPUs, GPUs, and other hardware now used to power artificial intelligence workloads.

Read more