Toggle light / dark theme

Increase in storms could have ‘catastrophic impact’ on fishing industry

Potential changes in the frequency and intensity of storms off the coast of the UK and around the world could have a “catastrophic impact” on the livelihood of fishermen and sustainability of fishing industries, research led by the University of Exeter has shown.

The research, based on a review of past studies and examination of future projections, warns that the increase in storms could make fishing more dangerous, displace fish from their natural habitats and interfere with the ability of fish to breed.

Storms off the coast of the UK are projected to become more frequent and intense over the next two centuries and more dramatic storms are expected in the North Sea and North Atlantic, to the West of the UK, Ireland and France, threatening the future of fishermen and the fish they catch.

Low-cost plastic sensors could monitor a range of health conditions

An international team of researchers have developed a low-cost sensor made from semiconducting plastic that can be used to diagnose or monitor a wide range of health conditions, such as surgical complications or neurodegenerative diseases.

The sensor can measure the amount of critical metabolites, such as lactate or glucose, that are present in sweat, tears, saliva or blood, and, when incorporated into a , could allow to be monitored quickly, cheaply and accurately. The new device has a far simpler design than existing sensors, and opens up a wide range of new possibilities for health monitoring down to the cellular level. The results are reported in the journal Science Advances.

The device was developed by a team led by the University of Cambridge and King Abdullah University of Science and Technology (KAUST) in Saudi Arabia. Semiconducting plastics such as those used in the current work are being developed for use in solar cells and flexible electronics, but have not yet seen widespread use in biological applications.

Sodium- and potassium-based batteries could be key for smart grid of the future

From electric cars that travel hundreds of miles on a single charge to chainsaws as mighty as gas-powered versions, new products hit the market each year that take advantage of recent advances in battery technology.

But that growth has led to concerns that the world’s supply of , the metal at the heart of many of the new rechargeable batteries, may eventually be depleted.

Now researchers at the Georgia Institute of Technology have found new evidence suggesting that batteries based on and hold promise as a potential alternative to lithium-based batteries.

California lawmakers debate creating regional electric grid

A contentious proposal to link oversight of California’s electric grid with other western states faces a crucial test Tuesday in a state Senate committee.

Supporters say regionalizing the grid would make it easier and cheaper to deploy renewable energy across the western United States. But critics, including some environmentalists and consumer advocates, say California would jeopardize its efforts to require the expansion of renewables.

California has greatly expanded the use of , particularly wind and solar, but that’s brought new challenges for grid operators to manage supply and demand as weather patterns and sunlight vary.

Promising new material has the right properties to capture solar energy, split water into hydrogen and oxygen

Solar energy is clean and abundant. But when the sun isn’t shining, you must store the energy in batteries or through a process called photocatalysis—in which solar energy is used to make fuels. In photocatalytic water splitting, sunlight separates water into hydrogen and oxygen. The hydrogen and oxygen can then be recombined in a fuel cell to release energy.

Now, a new class of —halide double perovskites—may have just the right properties to split water, according to a newly published paper in Applied Physics Letters.

“If we can come up with a material that can be useful as a water-splitting photocatalyst, then it would be an enormous breakthrough,” said Feliciano Giustino, a co-author on the paper.

/* */