Toggle light / dark theme

Study sheds light on solar farm impacts to property values

As solar energy becomes more affordable and widespread, farmland has emerged as a prime location for large-scale solar development. But with this expansion comes a persistent question: Do nearby property values suffer when solar farms move in?

In a paper published in the Proceedings of the National Academy of Sciences, researchers in Virginia Tech’s Department of Agricultural and Applied Economics in the College of Agriculture and Life Sciences looked at millions of property sales and thousands of commercial solar sites to shed some light on one of the most commonly cited downsides of large-scale solar adoption.

“As the U.S. scales up renewable energy, are increasingly being sited near homes and on farmland, and this often leads to pushback from residents worried about aesthetics or property value loss,” said Chenyang Hu, a graduate research assistant in the Department of Agricultural and Applied Economics and the paper’s lead author.

Lithium supply will fall short of growing electric vehicle demand through 2029, analysis finds

In a study published in Cell Reports Sustainability, researchers conducted the most comprehensive analysis to date on lithium supply and demand in China, Europe, and the U.S. Despite the fact that domestic lithium production in some of these regions could grow as much as 10 times by 2030, it would still fall short of the soaring demand for electric vehicles (EVs) without expanding imports or technological innovation.

“Lithium today is as important as gasoline in the ,” says author Qifan Xia of East China Normal University in Shanghai. “While reserves are substantial around the world, they are distributed unevenly across different countries. So, we were interested in whether the major EV markets could be self-sufficient.”

Together, China, Europe and the U.S. account for 80% of the world’s EV sales, and their demand is expected to increase further. The team estimated that China might need up to 1.3 million metric tons of lithium carbonate equivalent—a standard measure of lithium content—to produce new EVs. Europe might require 792,000 metric tons, followed by 692,000 metric tons for the U.S.

Major funding milestone for world-first prototype fusion plant

The government has announced a record £2.5 billion investment in fusion energy, which includes support for a prototype fusion energy plant in Nottinghamshire.

The new prototype plant, known as STEP (Spherical Tokamak for Energy Production) will be built at the site of the former West Burton A coal power station near Retford and Gainsborough. The site was chosen by the government in 2022 as the location for the project, with the project’s delivery expected to create over 10,000 jobs ranging from construction to operations. The announcement shows the government’s firm commitment to becoming a “clean energy superpower” by turbocharging innovation in an area that’s produced conventional power for generations.


The record funding for fusion research announced this week shows the UK government’s firm commitment to clean, sustainable energy.

Optimal design could unlock the potential of bladeless wind turbines

Insights from a new study could help unlock the full potential of a developing form of smaller-scale wind power generation, researchers say.

Engineers from the University of Glasgow have used sophisticated computer simulations of bladeless wind turbines (BWTs) to identify for the first time how future generations of the technology could be built for .

The team’s paper, titled “Performance analysis and geometric optimisation of bladeless wind turbines using wake oscillator model,” is published in Renewable Energy.

Novel crystal strategy yields brighter, longer-lasting all-inorganic perovskite LEDs

Perovskite has broad application prospects in solar cells, light-emitting diodes (LEDs), and detectors due to its high luminescent efficiency and low cost. However, electrons and holes in traditional perovskite materials often struggle to effectively recombine and emit light. As a result, the strongly space-confined method is commonly employed to improve luminescence efficiency. Furthermore, how to enhance the brightness of LEDs and extend their lifespan has become a top research priority in this field.

In a study published in Nature, Prof. Xiao Zhengguo’s team from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences has proposed a novel strategy based on weakly space-confined, large-grain crystals of all-inorganic perovskite to prepare with larger crystalline grains and higher temperature resistance. Researchers increased the brightness of perovskite LEDs (PeLEDs) to over 1.16 million nits and extended their lifespan to more than 180,000 hours.

Researchers developed the strategy based on the weakly space-confined technique. They first added specific compounds—hypophosphorous acid and ammonium chloride—to the perovskite material. Then, they prepared a new type of perovskite thin film with larger crystalline grains and fewer defects using a high-temperature annealing process.

Turning trash into treasure: How microwaves are revolutionizing e-waste recycling

You may not have heard of tantalum, but chances are you’re holding some right now. It’s an essential component in our cell phones and laptops, and currently, there’s no effective substitute. Even if you plan to recycle your devices after they die, the tantalum inside is likely to end up in a landfill or shipped overseas, being lost forever.

As a researcher focused on critical materials recovery, I’ve spent years digging through , not seeing it as garbage, but as an urban mine filled with valuable materials like .