Menu

Blog

Archive for the ‘supercomputing’ category: Page 21

Jun 22, 2023

Chinese researchers used a quantum processor to simulate black hole-like conditions

Posted by in categories: cosmology, mathematics, quantum physics, supercomputing

They created a quantum system with properties analogous to black holes.

A collaborative effort from research teams across multiple organizations in China was successful in using quantum computing technology to test Hawking Radiation, the theory proposed by renowned physicist Stephen Hawking, the South China Morning Post.

Quantum computing is a complex field that involves using mathematics, computer science, and physics to solve complex problems. Interesting Engineering recently reported how a quantum computer recently beat a conventional supercomputer at complex math.

Jun 18, 2023

IBM Quantum Computer Demonstrates Next Step Towards Moving Beyond Classical Supercomputing

Posted by in categories: quantum physics, supercomputing

IBM announced a new breakthrough, published on the cover of the scientific journal Nature, demonstrating for the first time that quantum computers can produce accurate results at a scale of 100+ qubits reaching beyond leading classical approaches.

Blog with more info.

Continue reading “IBM Quantum Computer Demonstrates Next Step Towards Moving Beyond Classical Supercomputing” »

Jun 16, 2023

IBM’s Eagle quantum computer just beat a supercomputer at complex math

Posted by in categories: mathematics, quantum physics, supercomputing

The company now plans to power its quantum computers with a minimum of 127 qubits.

IBM’s Eagle quantum computer has outperformed a conventional supercomputer when solving complex mathematical calculations. This is also the first demonstration of a quantum computer providing accurate results at a scale of 100+ qubits, a company press release said.

Continue reading “IBM’s Eagle quantum computer just beat a supercomputer at complex math” »

Jun 14, 2023

IBM quantum computer beat a supercomputer in a head-to-head test

Posted by in categories: quantum physics, supercomputing

Researchers at IBM pitted their 127-qubit Eagle quantum computer against a conventional supercomputer in a challenge to perform a complex calculation – and the quantum computer won.

By Karmela Padavic-Callaghan

Jun 13, 2023

NVIDIA’S HUGE AI Chip Breakthroughs Change Everything (Supercut)

Posted by in categories: robotics/AI, supercomputing

Highlights from the latest #nvidia keynote at Computex in Taiwan, home of TSMC and is the world’s capital of semiconductor manufacturing and chip fabrication. Topics include @NVIDIA’s insane H100 datacenter GPUs, Grace Hopper superchips, GH200 AI supercomputer, and how these chips will power generative AI technologies like #chatgpt by #openai and reshape computing as we know it.

💰 Want my AI research and stock picks? Let me know: https://tickersymbolyou.com/survey/

Continue reading “NVIDIA’S HUGE AI Chip Breakthroughs Change Everything (Supercut)” »

Jun 10, 2023

China’s photonic quantum computer is 180 million times faster says ‘father of quantum’

Posted by in categories: quantum physics, robotics/AI, supercomputing

It took less than a second to solve a puzzle that super computers would take five years to solve.

A quantum computer, Juizhang, built by a team led by Pan Jianwei, has claimed that it can process artificial intelligence (AI) related tasks 180 million times faster, the South China Morning Post.

Even as the US celebrates its lead in the list of TOP500 supercomputers in the world, China has been slowly building its expertise in the next frontier of computing — quantum computing. Unlike conventional computing, where a bit-the smallest block of information can either exist as one or zero, a bit in quantum computing can exist in both states at once.

Jun 6, 2023

Intelligence Explosion — Part 2/3

Posted by in categories: big data, computing, disruptive technology, evolution, futurism, innovation, internet, machine learning, robotics/AI, singularity, supercomputing

Hallucination!

Can “hallucinations” generate an alternate world, prophesying falsehood?

As I write this article, NVIDIA( is surpassing Wall Street’s expectations. The company, headquartered in Santa Clara, California, has just joined the exclusive club of only five companies in the world valued at over a trillion dollars [Apple (2.7T), Microsoft (2.4T), Saudi Aramco (2T), Alphabet/Google (1.5T), and Amazon (1.2T)], as its shares rose nearly 25% in a single day! A clear sign of how the widespread use of Artificial Intelligence (AI) can dramatically reshape the technology sector.

Intel has announced an ambitious plan to develop scientific generative AIs designed with one trillion parameters. These models will be trained on various types of data, including general texts, code, and scientific information. In comparison, OpenAI’s GPT-3 has 175 billion parameters (the size of GPT-4 has not yet been disclosed by OpenAI). The semiconductor company’s main focus is to apply these AIs in the study of areas such as biology, medicine, climate, cosmology, chemistry, and the development of new materials. To achieve this goal, Intel plans to launch a new supercomputer called Aurora, with processing capacity exceeding two EXAFLOPS(*, later this year.

Continue reading “Intelligence Explosion — Part 2/3” »

Jun 2, 2023

China’s 176-qubit quantum computing platform goes online

Posted by in categories: quantum physics, supercomputing

A 176-qubit quantum computing platform named Zuchongzhi went online for global users Wednesday night, which is expected to push forward the development of quantum computing hardware and its ecosystem, according to the Center for Excellence in Quantum Information and Quantum Physics under the Chinese Academy of Sciences.

Zhu Xiaobo, chief engineer of the project and professor at the University of Science and Technology of China, said that the research team improved the 66-qubit chip of Zuchonghi-2 by adding control interfaces of 110 coupled qubits, allowing users to manipulate 176 quantum bits.

Zuchongzhi 2 is a 66-qubit programmable quantum computing system made in 2021, which can perform large-scale random quantum circuits sampling about 10 million times faster than the fastest supercomputer at that time.

May 29, 2023

IBM planning 100,000-qubit quantum computer for 2033

Posted by in categories: quantum physics, supercomputing

IBM has announced a 10-year, $100 million initiative with the University of Tokyo and the University of Chicago to develop a quantum-centric supercomputer powered by 100,000 qubits.

Quantum-centric supercomputing is an entirely new – and as of now, unrealised – era of high-performance computing. A 100,000-qubit system would serve as a foundation to address some of the world’s most pressing problems that even the most advanced supercomputers of today may never be able to solve.

May 24, 2023

Progressive quantum leaps—high-speed, thin-film lithium niobate quantum processors driven by quantum emitters

Posted by in categories: quantum physics, supercomputing

Scalable photonic quantum computing architectures require photonic processing devices. Such platforms rely on low-loss, high-speed, reconfigurable circuits and near-deterministic resource state generators. In a new report now published in Science Advances, Patrik Sund and a research team at the center of hybrid quantum networks at the University of Copenhagen, and the University of Münster developed an integrated photonic platform with thin-film lithium niobate. The scientists integrated the platform with deterministic solid-state single photon sources using quantum dots in nanophotonic waveguides.

They processed the generated photons within low-loss circuits at speeds of several gigahertz and experimentally realized a variety of key photonic quantum information processing functionalities on high-speed circuits; with inherent key features to develop a four-mode universal photonic circuit. The results illustrate a promising direction in the development of scalable quantum technologies by merging integrated photonics with solid-state deterministic photon sources.

Quantum technologies have progressively advanced in the past several years to enable quantum hardware to compete with and surpass the capabilities of classical supercomputers. However, it is challenging to regulate at scale for a variety of practical applications and also to form fault-tolerant quantum technologies.

Page 21 of 90First1819202122232425Last