Toggle light / dark theme

“Think of these planets as international waters,” says Jain. “Nobody gets to own the underlying things, but they can use the private resources,” “They [can] own the fish and the oil … we as a private company are flying under the U.S. flag, in some sense then, we are a ship in international waters.”

With the legal framework in place to determine who owns the rights to any resources recovered on the moon and beyond, the doors of opportunity have been flung wide open. There’s a massive hoard of loot floating over our heads, and whoever gets there first basically has carte blanche to mine it — we just have to make the trip.

Read more

Previously, scientists from Brown detected trace amounts of water in similar volcanic samples — which are composed of loose material or “glass beads” — brought back to Earth from the Apollo 15 and 17 missions. However, the Apollo samples were not collected from the large pyroclastic deposits mapped using the satellite data in the recent study. This brought into question whether the Apollo samples represent a large portion of the moon’s “wet” interior or if they represent only a small water-rich region within an otherwise “dry” mantle.

Related: Moon Express Reveals Bold New Plan to Explore Solar System

“Our work shows that nearly all of the large pyroclastic deposits also contain water, so this seems to be a common characteristic of magmas that come from the deep lunar interior,” Milliken said. “That is, most of the mantle of the moon may be ‘wet.’”.

Read more

Ancient volcanic deposits on the moon reveal new evidence about the lunar interior, suggesting it contains substantial amounts of water.

Using satellite data, scientists from Brown University studied lunar pyroclastic deposits, layers of rock that likely formed from large volcanic eruptions. The magma associated with these explosive events is carried to the moon’s surface from very deep within its interior, according to a study published today (July 24) in Nature Geoscience.

Previous studies have observed traces of water ice in shadowed regions at the lunar poles. However, this water is likely the result of hydrogen that comes from solar wind, according to the new study’s lead author, Ralph Milliken, a geologist at Brown University. The new research reveals there is likely a large amount of water in the moon’s mantle, as well. This suggests that the water was delivered to the moon very early in its formation, before it fully solidified, Milliken told Space.com. [Photos: The Search for Water on the Moon].

Read more