Toggle light / dark theme

Scientists reinvent equations governing formation of snowflakes, raindrops and Saturn’s rings

Skoltech researchers have proposed novel mathematical equations that describe the behavior of aggregating particles in fluids. This bears on natural and engineering processes as diverse as rain and snow formation, the emergence of planetary rings, and the flow of fluids and powders in pipes.

Reported in Physical Review Letters, the new equations eliminate the need for juggling two sets of equations that had to be used in conjunction, which led to unacceptable errors for some applications.

Fluid aggregation is involved in many processes. In the atmosphere, agglomerate into rain, and ice microcrystals into snow. In space, particles orbiting come together to form rings like those of Saturn.

Superconductivity for sustainability: a new superconducting link for the High-Luminosity LHC

The Large Hadron Collider (LHC), the world’s largest and most powerful particle accelerator, is also the largest single machine operating in the world today that uses superconductivity. The proton beams inside the LHC are bent and focused around the accelerator ring using superconducting electromagnets. These electromagnets are built from coils, made of niobium–titanium (Nb–Ti) cables, that have to operate at a temperature colder than that of outer space in order to be superconducting. This allows the current to flow without any resistance or loss of energy. The High-Luminosity LHC (HL-LHC), an upgrade of the LHC, will for the first time feature innovative electrical transfer lines known as the “Superconducting Links”

Recently, CERN’s SM18 magnet test facility witnessed the successful integration of the first series of magnesium diboride superconducting cables into a novel, flexible cryostat. Together with high-temperature superconducting (HTS) magnesium diboride (MgB2) cables, they will form a unique superconducting transfer line to power the HL-LHC inner triplet magnets. The triplets are the focusing magnets that focus the beam, right before collisions, to a diameter as narrow as 5 micrometres.

Making history: Solar probe set to fly through the Sun’s atmosphere

NASA’s Parker Solar Probe is set to achieve its most dangerous feat yet tomorrow, December 24, 2024. After a six-year journey of spiraling closer to the star at the heart of our solar system, the spacecraft is expected to come within 3.8 million miles of the Sun’s surface.

This tiny distance in cosmic terms lets scientists capture a new type of information, revealing secrets about solar winds, extreme heat, and magnetic fields.

Engineers have spent years carefully adjusting Parker’s flight path using multiple Venus gravity assists. These flybys reshape the spacecraft’s orbit and tighten its looping path around the Sun.

The theory of quantum politics

As the multi-polar world of global politics becomes ever more complex, who better to cast light on its workings than a physicist turned President? Join Armen Sarkissian, former President of Armenia, as he argues for his new theory of quantum politics, in which individuals are necessarily connected across space and our world is dominated by randomness, uncertainty, and possibility.

Saturn’s rings could be much older than scientists first thought

However, “the idea that Saturn’s rings are young seemed very strange in the context of the solar system’s long evolutionary history,” study lead author Ryuki Hyodo, a planetary scientist at the Institute of Science Tokyo, told Space.com. “A few million years ago is the time of the dinosaurs on Earth. This would mean that the solar system was already well-established and relatively stable.”

In contrast, when Saturn formed about 4.5 billion years ago, or during the era called the Late Heavy Bombardment about 4 billion years ago, “the solar system was far more chaotic,” Hyodo said. “Many large planetary bodies were still migrating and interacting, greatly increasing the chances of a significant event that could have led to the formation of Saturn’s rings.”

To shed light on the age of Saturn’s rings, in the new study, Hyodo and his colleagues developed 3D computer models simulating crashes between micrometeoroids and the rings. These impacts typically occur at speeds of about 67,100 mph (108,000 km/h), they said.

Astronomers discover a ‘Hot Neptune’ in a Tight Orbit

A Neptune-sized planet, TOI-3261 b, makes a scorchingly close orbit around its host star. Only the fourth object of its kind ever found, the planet could reveal clues as to how planets such as these form.

An international team of scientists used the NASA space telescope, TESS (the Transiting Exoplanet Survey Satellite), to discover the exoplanet, then made further observations with ground-based telescopes in Australia, Chile, and South Africa. The measurements placed the new planet squarely in the “hot Neptune desert”—a category of planets with so few members that their scarcity evokes a deserted landscape.

The team, led by astronomer Emma Nabbie of the University of Southern Queensland, published their paper on the discovery, “Surviving in the Hot Neptune Desert: The Discovery of the Ultrahot Neptune TOI-3261 b,” in The Astronomical Journal in August 2024.

Season 5, Episode 31: Meet a Webb Scientist Who Looks Back in Time

Thirty-five years ago, our Cosmic Background Explorer, or COBE, was launched! The satellite was a crucial stepping stone in understanding the cosmic microwave background — the afterglow of the earliest moments of our universe.

Launched from what’s now Vandenberg Space Force Base on Nov. 18, 1989, COBE carried three instruments to space to measure microwave and infrared light across the whole sky. COBE’s observations helped us learn how our universe started and evolved.

COBE discovered that the oldest light in the universe contained tiny temperature variations (red indicates hotter regions, blue colder). These were the seeds for the gravitational formation of structures of galaxies seen in the universe today.

S James Webb Space Telescope: + There are still many questions we want to answer about the early universe, and our missions continue to study it and refine our understanding.

Explore the universe’s baby picture: https://go.nasa.gov/3VPXWgF