Toggle light / dark theme

Every now and again you run into an astronomical object where everything about it is mind blowing. And I get to share it with you! Let me introduce you to a binary star that will crush your imagination and make you realize the Universe is way cooler than you knew.

A few million years ago, and 6,000 light years from Earth, two stars were born out of the gas and dust in the galaxy in a cluster with many other stars. These two formed together, so close their mutual and growing gravity bound them together, forcing them to orbit one another. And they grew huge: By the time they switched on and became true stars, they each had more than two dozen times the mass of the Sun.

They were monsters. Huge, hot, and incredibly luminous, each blasting out as much as 100,000 times as much energy as the Sun does. Replace the Sun with one of these beasts and the Earth would evaporate like an ice cube on a scorching hot skillet.

Read more

Keith’s note: China is getting ready to launch a new space station which, when complete, will be on par with Mir with many capabilities similar to those offered by the ISS. China is openly seeking governmental and commercial participation. Meanwhile they are about to land a rover on the far side of the Moon as part of a methodical plan to land humans there.

Meanwhile NASA is trying to rid itself of the ISS through various half-hearted efforts to commercialize this amazing resource that rely on smoke and mirrors and faith-based funding plans. NASA is also puffing itself up again for the third time in less than 20 years to #GoBackToTheMoon or something with budgets that do not come close to making such a thing possible. Oh by the way #JourneyToMars is still on the books.

One would think that the prudent thing would be to leverage our interests with those of China as we have done with Russia and many other nations around the world. But short-sighted legislation and targeted xenophobia currently prevents this.

Read more

Yellowstone National Park, The Dolomites, Auschwitz Birkenau, The Great Wall … Apollo 11’s Tranquility Base?

For All Moonkind and TODAQ Financial have teamed up to map heritage sites on the Moon—using blockchain.

“Unlike similar sites on Earth that are protected under the UNESCO World Heritage Convention, sites on the Moon which bear witness to unparalleled technological accomplishments are not protected or even recognized by international law,” Michelle Hanlon, space lawyer and co-founder of For All Moonkind, said in a statement.

Read more

Update from a space robot rolling around Mars!


Sols 5073–5102

Opportunity continued exploring the south trough of Perseverance in May, still looking for evidence that explains just how this one-of-a-kind valley meandering through Endeavour Crater’s rim formed, and, along the way, helped the Mars Exploration Rover (MER) mission chalk up yet another first, linking with three relay orbiters in one Martian day or sol to send a pipeline of data home.

Read more

ESO’s Very Large Telescope (VLT) at Paranal Observatory, Chile, is the world’s most advanced optical instrument. The VLT uses state-of-the-art technology to provide the sharpest possible images, including adaptive optics with the laser guide stars shown in this image. The VLT uses these lasers to measure the turbulence in the Earth’s atmosphere, and responds by changing the shape of a mirror to counteract the negative effects of this turbulence.

Read more

This NASA/ESA Hubble Space Telescope image shows a cluster of hundreds of galaxies located about 7.5 billion light-years from Earth. The brightest galaxy within this cluster, named SDSS J1156+1911, is visible in the lower middle of the frame. It was discovered by the Sloan Giant Arcs Survey, which studied data maps covering huge parts of the sky from the Sloan Digital Sky Survey. The survey found more than 70 galaxies that look to be significantly affected by a cosmic phenomenon known as gravitational lensing.

Gravitational lensing is one of the predictions of Albert Einstein’s General Theory of Relativity. The mass contained within a galaxy is so immense that it can actually warp and bend the very fabric of its surroundings (known as space-time), forcing light to travel along curved paths. As a result, the image of a more distant galaxy appears distorted and amplified to an observer, as the light from it has been bent around the intervening galaxy. This effect can be very useful in astronomy, allowing astronomers to see galaxies that are either obscured or too distant to be otherwise detected by our current instruments.

Galaxy clusters are giant structures containing hundreds to thousands of galaxies, some with masses over one million billion times the mass of the Sun! SDSS J1156+1911 is only roughly 600 billion times the mass of the Sun, making it less massive than the average galaxy. However, it is massive enough to produce the fuzzy, greenish streak seen just below the brightest galaxy — the lensed image of a more distant galaxy.

Read more

Ryan Weed Positron Dynamics.

Current state of the art in-space propulsion systems based on chemical or ion propellants fail to meet requirements of 21st century space missions. Antimatter is a candidate mechanism for a propulsion system that could transport humans and/or robotic systems with drastically reduced transit times, providing quicker scientific results, increasing the payload mass to allow more capable instruments and larger crews, and reducing the overall mission cost. Unfortunately, previous propulsion concepts relied on unrealistic amounts of trapped antimatter — orders of magnitude away from any near-term capability. The goal of this effort is to determine the feasibility of a (TRL 1–2) radioisotope positron catalyzed fusion propulsion concept that does not rely on trapped antimatter. Such a transformative technology inspires and drives further innovation within the aerospace community and can be applied to a relevant mission — the bulk retrieval of an entire asteroid into translunar space — a mission of great scientific and commercial interest (e.g. asteroid mining). The idea of harnessing resources from asteroids goes back more than a century to Tsiolkovsky. Fundamentally, for asteroid mining to become financially viable, the cost of the retrieval spacecraft must be less than the value gained from the asteroid. Therefore, developing technology (e.g. efficient propulsion systems) that decreases the mass and complexity of the retrieval spacecraft must be a priority.

Editor: Loura Hall

Read more

In 2022, NASA’s Double Asteroid Redirection Test (DART) collides with the smaller body of the Didymos binary asteroid system in an attempt to measurably shift its orbit.

ESA’s Hera mission, now under study, will examine the aftermath of this impact to help determine whether humans can deflect threatening asteroids.

Hera will also demonstrate the ability to operate at close proximity around a low-gravity asteroid with some on-board autonomy similar in scope to a self-driving car, going on to deploy Europe’s first deep-space CubeSats, and potentially also a micro-lander, to test out a new multi-point intersatellite link technology.

Read more