Toggle light / dark theme

Round trip to the ASTEROID BELT in 148 days?! Sunbird Fusion Drive update from Pulsar!

Yesterday, Richard Dinan, CEO of Pulsar Fusion, sent me a ton of new information about their new Sunbird Fusion Drive! Specific capabilities, travel times to multiple destinations throughout the Solar System…they’ve got it all!
And now, Angry is bringing it to you!
#space #fusion #nasa.

Please support my channel!
DISCORD MEMBERSHIP, EXCLUSIVE CONTENT AND EARLY RELEASES!
https://www.patreon.com/AngryAstronaut.
https://cash.app/$Angry70
https://www.paypal.com/paypalme/AngryAstro.
Follow me on twitter:

Earth Might Be Sitting in a Massive ‘Supervoid’ in Space

When we gaze out into the cosmos beyond the borders of the Milky Way, we behold multitudes. Space is teeming with galaxies, speckled across the darkness like stars. If we stopped there, it would be easy to assume that the distribution of galaxies is more or less even throughout space-time.

But there’s some method to the madness: rather than wheeling freely about, galaxies tend to concentrate into clusters and clumps and filaments of the cosmic web, attracted by mutual gravity into matter highways, superhighways and nodes.

The inverse of that is voids – regions of significantly lower density, with relatively few galaxies.

Earth’s First Crust Was Continental — Long Before Plate Tectonics Began

New research suggests that Earth’s first crust, formed over 4.5 billion years ago, already carried the chemical traits we associate with modern continents. This means the telltale fingerprints of continental crust didn’t need plate tectonics to form, turning a long-standing theory on its head.

Using simulations of early Earth conditions, scientists found that the intense heat and molten environment of the planet’s infancy created these signatures naturally. The finding shakes up how we understand Earth’s evolution and could even influence how we think about crust formation on other planets.

A surprising shift in earth’s history.

JWST captures its first direct images of carbon dioxide outside solar system

The James Webb Space Telescope has captured its first direct images of carbon dioxide in a planet outside the solar system in HR8799, a multiplanet system 130 light-years away that has long been a key target for planet formation studies.

The observations provide strong evidence that the system’s four giant planets formed in much the same way as Jupiter and Saturn, by slowly building solid cores. They also confirm Webb can do more than infer atmospheric composition from starlight measurements—it can directly analyze the chemistry of exoplanet atmospheres.

“By spotting these strong carbon dioxide features, we have shown there is a sizable fraction of heavier elements, such as carbon, oxygen, and iron, in these planets’ atmospheres. Given what we know about the star they orbit, that likely indicates they formed via core accretion, which for planets that we can directly see is an exciting conclusion,” said William Balmer, a Johns Hopkins University astrophysicist who led the work.

/* */