Menu

Blog

Archive for the ‘space’ category: Page 64

Apr 8, 2024

Neutrinos Whisper Quantum Gravity Secrets From the South Pole

Posted by in categories: particle physics, quantum physics, space

University of Copenhagen team contributes to an Antarctic large-scale experiment striving to find out if gravity also exists at the quantum level; An extraordinary particle able to travel undisturbed through space seems to hold the answer.

Several thousand sensors distributed over a square kilometer near the South Pole are tasked with answering one of the large outstanding questions in physics: does quantum gravity exist? The sensors monitor neutrinos – particles with no electrical charge and almost without mass – arriving at the Earth from outer space. A team from the Niels Bohr Institute (NBI), University of Copenhagen, has contributed to developing the method that exploits neutrino data to reveal if quantum gravity exists.

“If as we believe, quantum gravity does indeed exist, this will contribute to unite the current two worlds in physics. Today, classical physics describes the phenomena in our normal surroundings such as gravity, while the atomic world can only be described using quantum mechanics. The unification of quantum theory and gravitation remains one of the most outstanding challenges in fundamental physics. It would be very satisfying if we could contribute to that end,” says Tom Stuttard, Assistant Professor at NBI.

Apr 8, 2024

Magnetic Awakening: Unusual Radio Pulses Detected From a Previously Dormant Star

Posted by in category: space

Researchers using Murriyang, CSIRO ’s Parkes radio telescope, have detected unusual radio pulses from a previously dormant star with a powerful magnetic field.

New results published today (April 8) in Nature Astronomy describe radio signals from magnetar XTE J1810-197 behaving in complex ways.

Continue reading “Magnetic Awakening: Unusual Radio Pulses Detected From a Previously Dormant Star” »

Apr 8, 2024

How we know the Universe is 13.8 billion years old

Posted by in categories: energy, space

Whenever and wherever stars are born, which occurs whenever clouds of gas sufficiently collapse under their own gravity, they come in a wide variety of sizes, colors, temperatures, and masses. The largest, bluest, most massive stars contain the greatest amounts of nuclear fuel, but perhaps paradoxically, those stars are actually the shortest lived. The reason is straightforward: in any star’s core, where nuclear fusion occurs, it only occurs wherever temperatures exceed 4 million K, and the higher the temperature, the greater the rate of fusion.

So the most massive stars might have the most fuel available at the start, but that means they shine brightly as they burn through their fuel quickly. In particular, the hottest regions in the core will exhaust their fuel the fastest, leading the most massive stars to die the most quickly. The best method we have for measuring “How old is a collection of stars?” is to examine globular clusters, which form stars in isolation often all at once, and then never again. By looking at the cooler, fainter stars that remain (and the lack of hotter, bluer, brighter, more massive stars), we can state with confidence that the Universe must be at least ~12.5–13.0 billion years old.

Apr 8, 2024

Secrets of the Van Allen Belt revealed in New Study

Posted by in categories: particle physics, space

A challenge to space scientists to better understand our hazardous near-Earth space environment has been set in a new study led by the University of Birmingham.

The research represents the first step towards new theories and methods that will help scientists predict and analyse the behaviour of particles in space.

It has implications for theoretical research, as well as for practical applications such as space weather forecasting.

Apr 8, 2024

Magnetic star flashes ‘never seen before’ signals baffling scientists

Posted by in category: space

A radio telescope observed complex activity in a magnetar 8,000 light-years from Earth:


A CSIRO team discovered a dormant star waking up with “unusual radio pulses” after being silent for years.

Most magnetars are known to emit polarized light, which oscillates in a certain direction. This magnetar generates light with circular polarization, creating a rapid spiral pattern as it travels across space.

Continue reading “Magnetic star flashes ‘never seen before’ signals baffling scientists” »

Apr 8, 2024

AI solves Schrödinger’s Equation

Posted by in categories: chemistry, information science, particle physics, quantum physics, robotics/AI, space

A newly developed AI method can calculate a fundamental problem in quantum chemistry: Schrödinger’s Equation. The technique could calculate the ground state of the Schrödinger equation in quantum chemistry.

Predicting molecules’ chemical and physical properties by relying on their atoms’ arrangement in space is the main goal of quantum chemistry. This can be achieved by solving the Schrödinger equation, but in practice, this is extremely difficult.

Apr 7, 2024

Astronomers Confirm a New ‘Trojan’ Asteroid that Shares an Orbit with Mars

Posted by in categories: chemistry, physics, space

Using observations made with the Gran Telescopio Canarias (GTC) a study led from the Instituto de Astrofísica de Canarias (IAC) and the Universidad Complutense de Madrid (UCM) has confirmed that the asteroid 2023 FW14, discovered last year, is accompanying the red planet in its journey round the sun, ahead of Mars and in the same orbit.

With this new member, the group of Trojans that accompany Mars has increased in number to 17. But it shows differences in its orbit and chemical composition which may indicate that it is a captured asteroid, of a primitive type. The results are published in Astronomy & Astrophysics.

A team from the Instituto de Astrofísica de Canarias (IAC) and the Universidad Complutense de Madrid (UCM) has observed and described for the first time the object 2023 FW14, a Trojan asteroid that shares its orbit with Mars. After Jupiter, the red planet has the largest number of known Trojans, totaling 17 with this new identification.

Apr 7, 2024

Solar Eclipses

Posted by in category: space

A solar occurs when the Moon passes between the Sun and the Earth and blocks the bright light of the Sun’s surface from view. The shadow of the Moon will fall in a small path on Earth’s surface, called the zone of totality.

Apr 4, 2024

Researchers use the Dark Energy Spectroscopic Instrument to make the largest 3D map of our universe

Posted by in categories: robotics/AI, space

With 5,000 tiny robots in a mountaintop telescope, researchers can look 11 billion years into the past. The light from far-flung objects in space is just now reaching the Dark Energy Spectroscopic Instrument (DESI), enabling us to map our cosmos as it was in its youth and trace its growth to what we see today.

Apr 4, 2024

Perseverance Rover’s 24th Sample Unveils Clues to Martian History

Posted by in categories: chemistry, climatology, space

Did Mars once contain life, or even the building block for life? This is what NASA’s Perseverance (Percy) rover has been trying to determine ever since it landed in Jezero Crater, which has shown an overwhelming amount of evidence to have once been site to a massive lakebed. Now, NASA recently announced that Percy has collected its 24th rock sample on March 11th, nicknamed “Comet Geyser”, with this sample being unlike the first 23 in that evidence suggests it was submerged in standing water for an indeterminant amount of time when Mars had liquid water billions of years ago.

Mosaic image of the drill holes where NASA’s Perseverance Mars rover extracted the “Comet Geyser” rock sample. (Credit: NASA/JPL-Caltech/ASU/MSSS)

“To put it simply, this is the kind of rock we had hoped to find when we decided to investigate Jezero Crater,” said Dr. Ken Farley, who is a project scientist for Perseverance and a professor of geochemistry at the California Institute of Technology. “Nearly all the minerals in the rock we just sampled were made in water; on Earth, water-deposited minerals are often good at trapping and preserving ancient organic material and biosignatures. The rock can even tell us about Mars climate conditions that were present when it was formed.”

Page 64 of 1,010First6162636465666768Last