Archive for the ‘space’ category: Page 1016
Apr 24, 2015
CERN-Critics: LHC restart is a sad day for science and humanity!
Posted by LHC Kritik in categories: astronomy, big data, complex systems, computing, cosmology, energy, engineering, ethics, existential risks, futurism, general relativity, governance, government, gravity, hardware, information science, innovation, internet, journalism, law, life extension, media & arts, military, nuclear energy, nuclear weapons, particle physics, philosophy, physics, policy, quantum physics, science, security, singularity, space, space travel, supercomputing, sustainability, time travel, transhumanism, transparency, treaties
Continue reading “CERN-Critics: LHC restart is a sad day for science and humanity!” »
Apr 18, 2015
Game-Changing Technologies
Posted by Mark Nall in categories: augmented reality, disruptive technology, economics, space
Game-changing technologies can be a waste of money or a competitive advantage. It depends on the technology and the organization.
It seems like the term “game-changing” gets tossed around a lot lately. This is particularly true with respect to new technologies. But what does the term mean, what are the implications, and how can you measure it?
With regarding to what it means, I like the MacMillan dictionary definition for game-changing. It is defined as “Completely changing the way that something is done, thought about, or made.” The reason I like this definition is it captures the transformational nature of what springs to mind when I hear the term game-changing. This should be just what it says. Not just a whole new ball game, but a whole new type of game entirely.
Every industry is unique. What is a game-changer for one, might only be a minor disruption or improvement for another. For example, the internal combustion engine was a game-changer for the transportation industry. It was important, though less of a game-changer for the asphalt industry due to secondary effect of increased demand for paved roads.
Tags: leadership, technology
By Katie Peek — Popular Science
As you fall feet first across an event horizon—the point where nothing can escape the black hole’s gravitational pull—you don’t feel anything change. But eventually, gravity is so much stronger at your feet than your head that you’re stretched apart, like Play-Doh, until you snap. Or at least, that’s the picture physicists drew after Einstein proposed his theory of general relativity in 1915. In the past few years, new possibilities for your untimely end have emerged.
The thought experiments attempt to resolve a paradox that physicist Stephen Hawking outlined in the 1970s. He showed that in their current forms, the two major pillars of physics—quantum mechanics and general relativity—can’t both be true near a black hole. General relativity governs how very massive objects work, while quantum mechanics governs how very tiny objects work. In most of the universe, physicists can choose which set of rules to apply—general relativity for a galaxy cluster, quantum mechanics for a particle accelerator—but a black hole is both very massive and very small. Read more
Apr 16, 2015
SpaceX’s Success
Posted by Benjamin T. Solomon in categories: complex systems, disruptive technology, engineering, innovation, space, space travel
I read all the news about SpaceX’s Falcon 9 latest “failure” to land on an autonomous spaceport drone ship aka barge. I view these as trials to success. Here’s why.
1. Grasshopper Successes: The two videos below show that the early landing trials aka Grasshopper from several heights between 250m and 1,000m.
The lessons here are:
a) Pinpoint landing of a 1st stage rocket is technologically feasible.
Apr 14, 2015
Here’s why humans are so obsessed with colonizing Mars
Posted by Seb in categories: space, space travel
Vivian Giang | Quartz
“‘Mars has been unanimously agreed upon by the world’s space agencies as the ‘horizon goal’ for human spaceflight,’ said Do, part of the MIT research group responsible for a widely read report debunking Mars One’s mission as unfeasible. ‘It is widely agreed that Mars is the most promising destination for near term colonization.’” Read more
Apr 10, 2015
Watch the First Artificial Gravity Experiment
Posted by Seb in categories: gravity, space
By Caleb A. Scharf — Scientific American
Gravity, as the old joke goes, sucks.
It drags us down, pulls on our weary limbs, makes our feet tired, makes parts of us droop. But it’s also a critical factor for our long term well-being. Astronauts and cosmonauts circling the Earth over the past 60 years have discovered that zero-g, or microgravity, is really not very good for you. Read more
by Fraser Cain — Universe Today
I remember back to a classic episode of the Guide to Space, where I provided an extremely fascinating and concise explanation for what a quasar is. Don’t recall that episode? Well, it was super. Just super. Alright slackers, let’s recap.
Quasars are the brightest objects in the Universe, visible across billions of light years. Likely blanching life from everything in the path of the radiation beam from its lighthouse of death. They occur when a supermassive black hole is actively feeding on material, pouring out a mountain of radiation. Black holes, of course, are regions of space with such intense gravity where nothing, not even light itself, can escape. Read more
Apr 4, 2015
This Is Why Bitcoin Is Being Launched Into Space
Posted by Seb in categories: bitcoin, space
By Ryan Faith — Vice News
Bitcoin becomes more valuable as bitcoin transactions become more secure. That is an important thing to keep in mind when trying to understand why the hell bitcoin is being launched into space.
Why? Because what’s a more secure place for the computers processing bitcoin transactions than in orbit several miles above the earth? That’s why core bitcoin developer and founder of Dunvegan Space Systems Jeff Garzik has developed the BitSat program, which plans to launch computers on small, (relatively) cheap satellites in 2016.Read more
Apr 3, 2015
What If We Had Another Earth?
Posted by Mark Nall in categories: futurism, habitats, robotics/AI, space, space travel, strategy
A realistic and desirable human destination would produce a different space program than what we have today.
“We reach for new heights and reveal the unknown for the benefit of humankind.” This is NASA’s Vision Statement. This is NASA’s reason for being, its purpose. This is a vision statement for science and knowledge. This vision statement was crafted in a solar system that has only one planet that is environmentally friendly to human life.
Thanks to the ongoing search for exoplanets, we’ve identified several planets in our galaxy that are Earth sized and in their star’s habitable zone. Based on statistics, potentially billions more are waiting to be found. We are just now developing the technology to detect them. But we’re nowhere near having the technology needed to get to visit them. They are simply too far away.
Now here is where I’d like to pose a what if question: What if there was another habitable planet just like Earth, right here in our own solar system? What would Earth’s space programs look like, if anyone with a good telescope could look up and see another world with oceans, and continents, and clouds, and green forests? I think that it is safe to say that space programs in this imaginary solar system would be vastly different than ours today. This is conjecture, but it seems likely that the vision statement above, would be more in line with making that new world available for humanity.
Tags: leadership, space, technology