Menu

Blog

Archive for the ‘solar power’ category: Page 83

Aug 18, 2020

Coffee stains inspire optimal printing technique for electronics

Posted by in categories: nanotechnology, particle physics, solar power, sustainability

Have you ever spilled your coffee on your desk? You may then have observed one of the most puzzling phenomena of fluid mechanics—the coffee ring effect. This effect has hindered the industrial deployment of functional inks with graphene, 2-D materials, and nanoparticles because it makes printed electronic devices behave irregularly.

Now, after studying this process for years, a team of researchers have created a new family of inks that overcomes this problem, enabling the fabrication of new electronics such as sensors, light detectors, batteries and solar cells.

Coffee rings form because the liquid evaporates quicker at the edges, causing an accumulation of solid particles that results in the characteristic dark ring. Inks behave like coffee—particles in the ink accumulate around the edges creating irregular shapes and uneven surfaces, especially when printing on hard surfaces like or plastics.

Aug 15, 2020

This New German Car is Covered With Solar Panels and Charges As It Drives

Posted by in categories: solar power, sustainability, transportation

Munich’s Sono Motors are about to launch the first mass-produced solar powered car in the world, the Sion, with solar panels all over it.

Aug 13, 2020

The future of deep space travel could come down to tiny solar panels

Posted by in categories: solar power, space travel, sustainability

Researchers from Germany sent solar cells into low-Earth Orbit to see how well they might perform in longer, deep space missions.

Aug 7, 2020

Algorithm predicts the compositions of new materials

Posted by in categories: information science, robotics/AI, solar power, sustainability

A machine-learning algorithm that can predict the compositions of trend-defying new materials has been developed by RIKEN chemists1. It will be useful for finding materials for applications where there is a trade-off between two or more desirable properties.

Artificial intelligence has great potential to help scientists find new materials with desirable properties. A that has been trained with the compositions and properties of known materials can predict the properties of unknown materials, saving much time in the lab.

But discovering new materials for applications can be tricky because there is often a trade-off between two or more material properties. One example is organic materials for , where it is desired to maximize both the voltage and current, notes Kei Terayama, who was at the RIKEN Center for Advanced Intelligence Project and is now at Yokohama City University. “There’s a trade-off between voltage and current: a material that exhibits a high voltage will have a low current, whereas one with a high current will have a low voltage.”

Aug 6, 2020

Chemists create the brightest-ever fluorescent materials

Posted by in categories: solar power, sustainability

By formulating positively charged fluorescent dyes into a new class of materials called small-molecule ionic isolation lattices (SMILES), a compound’s brilliant glow can be seamlessly transferred to a solid, crystalline state, researchers report August 6 in the journal Chem. The advance overcomes a long-standing barrier to developing fluorescent solids, resulting in the brightest known materials in existence.

“These materials have potential applications in any technology that needs bright fluorescence or calls for designing optical properties, including harvesting, bioimaging, and lasers,” says Amar Flood, a chemist at Indiana University and co-senior author on the study along with Bo Laursen of the University of Copenhagen.

“Beyond these, there are interesting applications that include upconverting light to capture more of the solar spectrum in solar cells, light-switchable materials used for information storage and photochromic glass, and circularly polarized luminescence that may be used in 3D display technology,” Flood says.

Aug 2, 2020

First boat to make its own hydrogen fuel from seawater

Posted by in categories: robotics/AI, solar power, sustainability

Solar power, hydrogen fuel from seawater, automatic wingsails, a 6 year journey.


The Energy Observer set sail on a six-year world tour in 2017, testing new technologies, from onboard hydrogen electrolysis to fully-automated sails. It’s hoped the rugged ocean environment will prove the techs’ durability and usefulness at home.

Continue reading “First boat to make its own hydrogen fuel from seawater” »

Aug 2, 2020

New Perovskite Solar Cell Another Nail In Natural Gas Coffin

Posted by in categories: solar power, sustainability

Just a few years ago, low cost natural gas was the main force pushing coal out of the power generation market, and now low cost solar power is sneaking up on low cost natural gas. So far the competition is a trickle, not a flood. However, natural gas stakeholders don’t have much breathing room left, as indicated by the latest perovskite solar cell research.

Jul 24, 2020

How to build a Dyson sphere in five (relatively) easy steps

Posted by in categories: solar power, sustainability

We are closer to being able to build a Dyson Sphere than we think. By enveloping the sun in a massive sphere of artificial habitats and solar panels, a Dyson Sphere would provide us with more energy than we would ever know what to do with while dramatically increasing our living space. Implausible you say? Something for our distant descendants to consider? Think again. We could conceivably get going on the project in about 25 to 50 years, with completion of the first phase requiring only a few decades.

Jul 22, 2020

Oxygen breathes new life into solar cell research

Posted by in categories: chemistry, solar power, sustainability

(Nanowerk News) Scientists in Australia and the United States have been able to ‘upconvert’ low energy light into high energy light, which can be captured by solar cells, in a new way, with oxygen the surprise secret ingredient. The results are published in Nature Photonics (“Photochemical upconversion of near-infrared light from below the silicon bandgap”).


Scientists in Australia and the United States have been able to ‘upconvert’ low energy light into high energy light, which can be captured by solar cells, in a new way, with oxygen the surprise secret ingredient.

The results are published in Nature Photonics (“Photochemical upconversion of near-infrared light from below the silicon bandgap”).

Continue reading “Oxygen breathes new life into solar cell research” »

Jul 16, 2020

Hybrid solar converter harvests both sunlight and heat at 85% efficiency

Posted by in categories: solar power, sustainability

Engineers have developed a new type of hybrid solar energy converter, which uses energy from the Sun to create both electricity and steam. The device reportedly has high efficiency and runs at low cost, allowing industry to make use of a wider spectrum of solar energy.

The most common way of collecting energy from the Sun is through photovoltaics. These solar cells produce electricity from sunlight, and they’re so simple that they’re built into everything from garden lights to the grid itself.

But it’s not the only way. Solar concentrators collect heat instead of light, focusing the Sun’s rays to heat up a contained fluid. This can then be used to generate electricity – say as steam turning a turbine – or more directly, to heat homes or for other industrial processes.

Page 83 of 140First8081828384858687Last