Toggle light / dark theme

Lunar Gateway’s Revolutionary Powerhouse: Unveiling High-Tech Power and Propulsion Element

NASA ’s upcoming Gateway space station, set to orbit the Moon, will rely heavily on its Power and Propulsion Element (PPE) for energy and maintaining its orbit. Currently under development with Maxar Technologies, the PPE uses solar electric propulsion to efficiently power the station. This system, designed to significantly reduce the need for propellant, will be integrated with Gateway’s habitation module and launched to support deep space exploration and future Artemis missions to Mars.

As astronauts live and work on Gateway to enable sustained exploration and research in deep space, their efforts will be made possible by Gateway’s Power and Propulsion Element (PPE). A foundational component of the lunar outpost and the most powerful solar electric spacecraft ever flown, PPE will provide Gateway with power and allow it to maintain its unique orbit around the Moon.

Gateway will be humanity’s first space station in lunar orbit and serve as an essential element of NASA’s Artemis missions. As astronauts live and work on Gateway to enable sustained exploration and research in deep space, their efforts will be made possible by the Power and Propulsion Element (PPE). A foundational component of the lunar outpost and the most powerful solar electric spacecraft ever flown, PPE will provide Gateway with power and allow it to maintain its unique orbit around the Moon.

Researchers create 2D all-organic perovskites and demonstrate potential use in 2D electronics

Perovskites are among the most researched topics in materials science. Recently, a research team led by Prof. LOH Kian Ping, Chair Professor of Materials Physics and Chemistry and Global STEM Professor of the Department of Applied Physics of The Hong Kong Polytechnic University (PolyU), Dr Kathy LENG, Assistant Professor of the same department, together with Dr Hwa Seob CHOI, Postdoctoral Research Fellow and the first author of the research paper, has solved an age-old challenge to synthesise all-organic two-dimensional perovskites, extending the field into the exciting realm of materials. This breakthrough opens up a new field of 2D all-organic perovskites, which holds promise for both fundamental science and potential applications.

This research was published in the journal Science (“Molecularly thin, two-dimensional all-organic perovskites”).

Perovskites are named after their structural resemblance to the mineral calcium titanate perovskite, and are well known for their fascinating properties that can be applied in wide-ranging fields such as solar cells, lighting and catalysis. With a fundamental chemical formula of ABX 3, perovskites possess the ability to be finely tuned by adjusting the A and B cations as well as the X anion, paving the way for the development of high-performance materials.

Energy Scientists Have Unraveled the Mystery of Gold’s Glow

Researchers at EPFL have created the first detailed model explaining the quantum-mechanical effects that cause photoluminescence in thin gold films, a breakthrough that could advance the development of solar fuels and batteries.

Luminescence, the process where substances emit photons when exposed to light, has long been observed in semiconductor materials like silicon. This phenomenon involves electrons at the nanoscale absorbing light and subsequently re-emitting it. Such behavior provides researchers with valuable insights into the properties of semiconductors, making them useful tools for probing electronic processes, such as those in solar cells.

In 1969, scientists discovered that all metals luminesce to some degree, but the intervening years failed to yield a clear understanding of how this occurs. Renewed interest in this light emission, driven by nanoscale temperature mapping and photochemistry applications, has reignited the debate surrounding its origins. But the answer was still unclear – until now.

Researchers outline path forward for tandem solar cells

As the old saying goes, two heads are better than one. The same is true when it comes to solar cells working in tandem. Researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have prepared a roadmap on how to move tandem solar cells—particularly those that mesh different photovoltaic technologies—closer to commercialization.

As the researchers pointed out in an article in the journal Joule, considerably more solar power must be added globally beyond the currently installed 1 terawatt of capacity. Because of the growing population and increased electrification of all energy sectors, experts are predicting the world will need 75 terawatts of photovoltaics (PV) by 2050.

The vast majority of solar modules in use today rely on a single junction, which is able to absorb only a fraction of the solar spectrum and thus are limited to how efficient they can be. Tandem solar cells, which consist of two or more junctions, hold the potential to reach much higher efficiencies. Because tandems are stacked on top of each other, the total area a module requires decreases—in turn, raising the efficiency and potentially lowering the total system cost.