Menu

Blog

Archive for the ‘quantum physics’ category: Page 815

Apr 7, 2016

Light and sound waves used to control electron states

Posted by in categories: computing, particle physics, quantum physics

University of Oregon physicists have combined light and sound to control electron states in an atom-like system, providing a new tool in efforts to move toward quantum-computing systems.

The work was done on diamond topped with a layer of zinc oxide containing electrical conductors and performed at a temperature of 8 degrees Kelvin (−445.27 Fahrenheit, −265.15 Celsius) — just above absolute zero.

Using sound waves known as surface acoustic waves to change electron states could foster data transfer between quantum bits, the researcher said. The interaction of qubits, as is the case with binary bits in current computing, is seen as vital in building advanced systems.

Read more

Apr 7, 2016

Quantum simulation 2.0: Atoms chat long distance

Posted by in categories: particle physics, quantum physics

In an international first, a research team of experimental physicists has measured long-range magnetic interactions between ultracold particles confined in an optical lattice. Their work introduces a new control knob to quantum simulation.

Read more

Apr 7, 2016

Quantum effects affect the best superconductor

Posted by in categories: particle physics, quantum physics, supercomputing, transportation

The theoretical results of a piece of international research published in Nature, whose first author is Ion Errea, a researcher at the UPV/EHU and DIPC, suggest that the quantum nature of hydrogen (in other words, the possibility of it behaving like a particle or a wave) considerably affects the structural properties of hydrogen-rich compounds (potential room-temperature superconducting substances). This is in fact the case of the superconductor hydrogen sulphide: a stinking compound that smells of rotten eggs, which when subjected to pressures a million times higher than atmospheric pressure, behaves like a superconductor at the highest temperature ever identified. This new advance in understanding the physics of high-temperature superconductivity could help to drive forward progress in the search for room-temperature superconductors, which could be used in levitating trains or next-generation supercomputers, for example.

Superconductors are materials that carry electrical current with zero electrical resistance. Conventional or low-temperature ones behave that way only when the substance is cooled down to temperatures close to absolute zero (−273 °C o 0 degrees Kelvin). Last year, however, German researchers identified the high-temperature superconducting properties of hydrogen sulphide which makes it the superconductor at the highest temperature ever discovered: −70 °C or 203 K.

Read more

Apr 7, 2016

Exotic quantum effects can govern the chemistry around us

Posted by in categories: chemistry, particle physics, quantum physics

Nice read that ties Quantum properties such as tunneling to everything around us including our own blood supply in our bodies.


Objects of the quantum world are of a concealed and cold-blooded nature: they usually behave in a quantum manner only when they are significantly cooled and isolated from the environment. Experiments carried out by chemists and physicists from Warsaw have destroyed this simple picture. It turns out that not only does one of the most interesting quantum effects occur at room temperature and higher, but it plays a dominant role in the course of chemical reactions in solutions!

We generally derive our experimental knowledge of quantum phenomena from experiments carried out using sophisticated equipment under exotic conditions: at extremely low temperatures and in a vacuum, isolating quantum objects from the disturbing influence of the environment. Scientists from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, led by Prof. Jacek Waluk and Prof. Czeslaw Radzewicz’s group from the Faculty of Physics, University of Warsaw (FUW), have just shown that one of the most spectacular quantum phenomena — that of tunneling — takes place even at temperatures above the boiling point of water. However, what is particularly surprising is the fact that the observed effect applies to hydrogen nuclei, which tunnel in particles floating in solution. The results of measurements leave no doubt: in the studied system, in conditions typical for our environment, tunneling turns out to be the main factor responsible for the chemical reaction!

Continue reading “Exotic quantum effects can govern the chemistry around us” »

Apr 7, 2016

Digital Marketing CCO: How Quantum Computing Will Change Work As We Know It

Posted by in categories: computing, quantum physics, robotics/AI

Imagine robotics and other AI on QC; because it is coming and on a very large scale.


The computer chip has now reached middle age. Like most of us in middle age, it is not as sprightly as it once was, and is set to be superseded by younger forms of computing. Enter the quantum computer. It’s set to transform our lives, the way we work and play.

What exactly is quantum computing?

Continue reading “Digital Marketing CCO: How Quantum Computing Will Change Work As We Know It” »

Apr 7, 2016

Quantum technologies: from mobile phones to supercomputers

Posted by in categories: encryption, mobile phones, quantum physics, supercomputing

Beautiful future lays ahead in QC.


Quantum physics not only explains how matter behaves at the subatomic level, but is also used to create many devices in our everyday lives, from lasers and transistors to GPS and mobile phones. The next wave of innovation could lead to unbreakable encryption and computers that are up to one million times faster. On 6 April, Parliament’s Science and Technology Options Assessment (STOA) unit organised a workshop to discuss with experts the potential of these new quantum technologies.

Exploiting the quirks of the quantum world

Continue reading “Quantum technologies: from mobile phones to supercomputers” »

Apr 6, 2016

Long-distance transport of electron spins for spin-based logic devices

Posted by in categories: computing, quantum physics

Almost all electronic devices operate by using an electron charge controlled by electrical means. In addition to a charge, an electron has a spin as a magnetic property. A groundbreaking concept for information processing based on electron spins is proposed using electron spins in semiconductors. Quantum computing enables us to exceed the speed of conventional computing and a spin transistor reduces energy consumption.

However, electron spins have yet to be used in realistic electronic devices except as part of magnetic devices for information storage. The reason is that spin polarization in a semiconductor is easily randomized, and consequently, it is difficult to transport spin polarization over a long distance.

An electron spin itself is a quantum spin angular momentum. Electrical transport and the manipulation of spin polarization are essential technologies if electron spins are to be employed in a device.

Read more

Apr 6, 2016

Advance may make quantum computing more practical

Posted by in categories: computing, engineering, quantum physics, transportation

Very nice; we’re getting closer.


But superposition is fragile, and finding ways to preserve it is one of the chief obstacles to developing large, general-purpose quantum computers. In today’s Nature, MIT researchers describe a new approach to preserving superposition in a class of quantum devices built from synthetic diamonds. The work could ultimately prove an important step toward reliable quantum computers.

In most engineering fields, the best way to maintain the stability of a physical system is feedback control. You make a measurement — the current trajectory of an airplane, or the temperature of an engine — and on that basis produce a control signal that nudges the system back toward its desired state.

Continue reading “Advance may make quantum computing more practical” »

Apr 5, 2016

How artificial intelligence will impact the role of security pros

Posted by in categories: quantum physics, robotics/AI, security

Granted AI performs well at identifying, predicting how to respond through analyzing patterns and information, etc. However, AI is not completely hacker proof at this point. AI still requires close monitoring by humans. The bottom line is until the existing net infrastructure and digital platforms are Quantum based; it will be hard to make AI hacker proof and fully autonomous due to the risks with the existing digital technology.


In the new battle between man and machine, how does artificial intelligence impact the security professional?

Posted by Ben Rossi.

Continue reading “How artificial intelligence will impact the role of security pros” »

Apr 5, 2016

IBM Watson is Working to Bring AI to the Blockchain

Posted by in categories: bitcoin, computing, finance, internet, quantum physics, robotics/AI, security

I consider this as a nice interim step in maturing the digital platform environment for financial services. However, once Quantum Computing, Quantum Internet, etc. is available to the masses such as in China, etc. this solution will fail in protecting financial data and other PPI related information as recent research is showing us.

https://lnkd.in/bjcCJ-U


IBM is currently attempting to merge artificial intelligence and the blockchain into a single, powerful prototype.

Continue reading “IBM Watson is Working to Bring AI to the Blockchain” »