Menu

Blog

Archive for the ‘quantum physics’ category: Page 798

Aug 21, 2015

Physicists Unveil First Quantum Interconnect

Posted by in categories: computing, electronics, physics, quantum physics

One of the unsung workhorses of modern technology is the humble interconnect. This is essentially a wire or set of wires that link one part of an electronic system to another. In ordinary silicon chips, interconnect can take up most of the area of a chip; and the speed and efficiency with which information can travel along these interconnects, is a major limiting factor in computing performance.

So it’s no wonder that physicists and engineers are creating new generations of interconnect that will become the backbone of information processing machines of the future.

Read more

Aug 18, 2015

Cryptographers Develop Encryption Method Resistant to Future Quantum Attacks

Posted by in categories: computing, encryption, internet, quantum physics

Cryptographers are working on new encryption methods able to protect today’s Internet communications from future quantum computers that can be able to break today’s cryptography techniques. The researchers have developed upgrades to the Internet’s core encryption protocol that will prevent quantum computer users from intercepting Internet communications.

Read more

Aug 16, 2015

Austrian Scientists Develop Ghostly Superposed Quantum Circuits for Faster Quantum Computing

Posted by in categories: computing, quantum physics

Scientists at the University of Vienna and the Austrian Academy of Sciences have developed a new quantum computing technique in which operations occur without a well-defined order. The new technique accomplished a task more efficiently than a standard quantum computer, and could open the way to faster quantum computing.

Read more

Aug 15, 2015

The Toil Toward Quantum Computers Just Turned Into a Sprint

Posted by in categories: biotech/medical, computing, electronics, quantum physics, supercomputing

A new optical chip that can process photons in a dizzying number of infinite ways has been developed by two research teams. Researchers from the University of Bristol in the UK and Nippon Telegraph and Telephone in Japan (NTT) are behind the breakthrough in quantum computing. The means to solve daunting problems such as the ability to design new life-saving drugs; perform advanced calculations that are a step or two beyond even supercomputers; and analyze weather patterns for more accurate forecasting has just received a major boost.

A group of researchers have pulled off a staggering feat; they’ve developed a silicon-based optical chip that is fully reprogrammable and can process photons in every way imaginable and then some, reports Phys.org.

Prof. Jeremy O’Brien, the Director of the Centre for Quantum Photonics at Bristol University where researchers masterminded the development of the chip, said:

Read more

Aug 14, 2015

Australian Physicists Solve Quantum Tunneling Mystery

Posted by in categories: engineering, physics, quantum physics

Professor Kheifets and Dr. Igor Ivanov, from the ANU Research School of Physics and Engineering, and An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process.

Read more

Aug 14, 2015

Reprogrammable optic chip has complete flexibility in processing of photons and is a pathway to quantum computing

Posted by in categories: biotech/medical, computing, electronics, quantum physics

Researchers from the University of Bristol in the UK and Nippon Telegraph and Telephone (NTT) in Japan, have developing an optical chip that can process photons in an infinite number of ways.

It’s a major step forward in creating a quantum computer to solve problems such as designing new drugs, superfast database searches, and performing otherwise intractable mathematics that aren’t possible for super computers.

The fully reprogrammable chip brings together a multitude of existing quantum experiments and can realise a plethora of future protocols that have not even been conceived yet, marking a new era of research for quantum scientists and engineers at the cutting edge of quantum technologies.

Read more

Aug 14, 2015

New optical chip lights up the race for quantum computer

Posted by in categories: computing, electronics, quantum physics

The microprocessor inside a computer is a single multipurpose chip that has revolutionised people’s life, allowing them to use one machine to surf the web, check emails and keep track of finances.

Now, researchers from the University of Bristol in the UK and Nippon Telegraph and Telephone (NTT) in Japan, have pulled off the same feat for light in the quantum world by developing an optical chip that can process photons in an infinite number of ways.

Read more

Aug 12, 2015

Quantum 3D Printing on the Horizon, According to UBC Researcher Jennifer Hoffman

Posted by in categories: 3D printing, neuroscience, quantum physics

I’m a firm believer that technology can take us to unimaginable places, from both a physical and a mental standpoint. Technological progress is oftentimes cha.

Read more

Jul 13, 2015

Google and NASA’s Quantum Artificial Intelligence Lab

Posted by in categories: computing, quantum physics, robotics/AI

A peek at the early days of the Quantum AI Lab: a partnership between NASA, Google, USRA, and a 512-qubit D-Wave Two quantum computer. Learn more at http://google.com/+QuantumAILab.

Read more

Jul 11, 2015

IBM Watson CTO: Quantum computing could advance artificial intelligence

Posted by in categories: computing, engineering, futurism, quantum physics, robotics/AI

IBM Watson CTO: Quantum computing could advance artificial intelligence by orders of magnitude.

Quantum computers have already been used to test artificial intelligence by researchers in China, albeit in a very limited capacity. Earlier in 2015, a team from the country’s University of Science and Technology developed a quantum system capable of recognising handwritten characters in a demonstration they dubbed quantum artificial intelligence.

This demonstration was on a quantum computer using only four qubits, leading to speculation of what a system using hundreds – or even thousands – of qubits would be capable of. Such machines do not yet exist, at least not commercially, but Canada-based quantum computing firm D-Wave systems recently claimed it has built a 1,000 qubit quantum computer.

Continue reading “IBM Watson CTO: Quantum computing could advance artificial intelligence” »