Toggle light / dark theme

Signal adds new cryptographic defense against quantum attacks

Signal announced the introduction of Sparse Post-Quantum Ratchet (SPQR), a new cryptographic component designed to withstand quantum computing threats.

SPQR will serve as an advanced mechanism that continuously updates the encryption keys used in conversations and discarding the old ones.

Signal is a cross-platform, end-to-end encrypted messaging and calling app managed by the non-profit Signal Foundation, with an estimated monthly active user base of up to 100 million.

What if the Universe Remembers Everything? New Theory Rewrites the Rules of Physics

For over a hundred years, physics has rested on two foundational theories. Einstein’s general relativity describes gravity as the curvature of space and time, while quantum mechanics governs the behavior of particles and fields.

Each theory is highly successful within its own domain, yet combining them leads to contradictions, particularly in relation to black holes, dark matter, dark energy, and the origins of the universe.

My colleagues and I have been exploring a new way to bridge that divide. The idea is to treat information – not matter, not energy, not even spacetime itself – as the most fundamental ingredient of reality. We call this framework the quantum memory matrix (QMM).

Lab-Grown Brains Powers the World’s First Bio-Computer 🧠

Discover the world’s first computer powered by human brain cells! In this groundbreaking video, we dive into the revolutionary Neuroplatform by FinalSpark, merging biology with technology. Witness how biocomputing is transforming the future of artificial intelligence and computing with unparalleled energy efficiency and processing power. Subscribe now to stay updated on cutting-edge tech that blurs the lines between science fiction and reality! 🧠💻

#Biocomputing #Neuroplatform #AI #FutureTech #Innovation #FinalSpark #BrainPoweredComputer.

Stay ahead in 2024: Unlock the future of AI, tech, and innovative businesses! 🚀 Subscribe for the latest insights and be part of a community that learns, grows, and leads the way in a tech-driven world. Discover, ignite and soar into tomorrow with Quantum Spark.

‘Spooky action at a distance’—a beginner’s guide to quantum entanglement and why it matters

Many governments and tech companies are investing heavily in quantum technologies. In New Zealand, the recently announced Institute for Advanced Technology is also envisioned to focus on this area of research.

Molecular qubits can communicate at telecom frequencies

A team of scientists from the University of Chicago, the University of California Berkeley, Argonne National Laboratory, and Lawrence Berkeley National Laboratory has developed molecular qubits that bridge the gap between light and magnetism—and operate at the same frequencies as telecommunications technology. The advance, published today in Science, establishes a promising new building block for scalable quantum technologies that can integrate seamlessly with existing fiber-optic networks.

Because the new molecular qubits can interact at telecom-band frequencies, the work points toward future quantum networks—sometimes called the “.” Such networks could enable ultra-secure communication channels, connect quantum computers across long distances, and distribute quantum sensors with unprecedented precision.

Molecular qubits could also serve as highly sensitive quantum sensors; their tiny size and chemical flexibility mean they could be embedded in unusual environments—such as —to measure magnetic fields, temperature, or pressure at the nanoscale. And because they are compatible with silicon photonics, these molecules could be integrated directly into chips, paving the way for compact quantum devices that could be used for computing, communication, or sensing.

Quantum key distribution method tested in urban infrastructure offers secure communications

In the era of instant data exchange and growing risks of cyberattacks, scientists are seeking secure methods of transmitting information. One promising solution is quantum cryptography—a quantum technology that uses single photons to establish encryption keys.

A team from the Faculty of Physics at the University of Warsaw has developed and tested in a novel system for quantum key distribution (QKD). The system employs so-called high-dimensional encoding. The proposed setup is simpler to build and scale than existing solutions, while being based on a phenomenon known to physicists for nearly two centuries—the Talbot effect. The research results have been published in the journals Optica Quantum, Optica, and Physical Review Applied.

“Our research focuses on quantum key distribution (QKD)—a technology that uses single photons to establish a secure cryptographic key between two parties,” says Dr. Michał Karpiński, head of the Quantum Photonics Laboratory at the Faculty of Physics, University of Warsaw.

White Rabbit optical timing technology meets quantum entanglement

A small yet innovative experiment is taking place at CERN. Its goal is to test how the CERN-born optical timing signal—normally used in the Laboratory’s accelerators to synchronize devices with ultra-high precision—can best be sent through an optical fiber alongside a single-photon signal from a source of quantum-entangled photons. The results could pave the way for using this technique in quantum networks and quantum cryptography.

Research in is growing rapidly worldwide. Future quantum networks could connect quantum computers and sensors, without losing any . They could also enable the secure exchange of information, opening up applications across many fields.

Unlike classical networks, where information is encoded in binary bits (0s and 1s), quantum networks rely on the unique properties of quantum bits, or “qubits,” such as superposition (where a qubit can exist in multiple states simultaneously) and entanglement (where the state of one qubit influences the state of another no matter how far apart they are).

SCP-022 Explained: The Morgue That Breaks Science (Speculative Science Deep Dive)

SCP 22, known as The Morgue, is one of the most chilling and mysterious anomalies in the SCP Foundation archives. A simple hospital basement in Great Britain became the stage for an impossible phenomenon: cadavers rising without life, objects vanishing into nowhere, and a morgue that behaves less like a room and more like a machine.

In this speculative science deep dive, we explore SCP 22 through the lenses of biology, physics, and consciousness. Could these reanimated cadavers be powered by quantum vacuum energy? Is the morgue recycling entropy across dimensions? Or is it a misunderstood mechanism that uses humans as raw material for unknown purposes?

This essay-video blends science, philosophy, and horror to uncover the enigma of SCP 022.

If you enjoyed this video, leave a comment with your theory, subscribe for more speculative science essays, and share it with anyone who loves the SCP universe.

/* */