Menu

Blog

Archive for the ‘quantum physics’ category: Page 329

Aug 19, 2022

11 Top Experts: Quantum Top Trends 2023 And 2030

Posted by in categories: economics, finance, government, information science, quantum physics, robotics/AI, supercomputing

Quantum Information Science / Quantum Computing (QIS / QC) continues to make substantial progress into 2023 with commercial applications coming where difficult practical problems can be solved significantly faster using QC (quantum advantage) and QC solving seemingly impossible problems and test cases (not practical problems) that for classical computers such as supercomputers would take thousands of years or beyond classical computing capabilities (quantum supremacy). Often the two terms are interchanged. Claims of quantum advantage or quantum supremacy, at times, are able to be challenged through new algorithms on classical computers.

The potential is for hybrid systems with quantum computers and classical computers such as supercomputers (and perhaps analog computing in the future) could operate in the thousands and potentially millions of times faster in lending more understanding into intractable challenges and problems. Imagine the possibilities and the implications for the benefit of Earth’s ecosystems and humankind significantly impacting in dozens of areas of computational science such as big data analytics, weather forecasting, aerospace and novel transportation engineering, novel new energy paradigms such as renewable energy, healthcare and drug discovery, omics (genomics, transcriptomics, proteomics, metabolomic), economics, AI, large-scale simulations, financial services, new materials, optimization challenges, … endless.

The stakes are so high in competitive and strategic advantage that top corporations and governments are investing in and working with QIS / QC. (See my Forbes article: Government Deep Tech 2022 Top Funding Focus Explainable AI, Photonics, Quantum—they (BDC Deep Tech Fund) invested in QC company Xanadu). For the US, in 2018, there is the USD $1.2 billion National Quantum Initiative Act and related U.S. Department of Energy providing USD $625 million over five years for five quantum information research hubs led by national laboratories: Argonne, Brookhaven, Fermi, Lawrence Berkeley and Oak Ridge. In August 2022, the US CHIPS and Science Act providing hundreds of millions in funding as well. Coverage includes: accelerating the discovery of quantum applications; growing a diverse and domestic quantum workforce; development of critical infrastructure and standardization of cutting-edge R&D.

Aug 19, 2022

Protons Contain Charm Quarks Heavier Than Themselves

Posted by in categories: particle physics, quantum physics

Protons, once thought to be fundamental particles, have been known since 1968 to instead be composed of quarks. Some quarks are actually heavier than protons, but this wasn’t considered a problem because protons were thought to be made up purely of light quarks – two up and one down quark to be precise. However, new research shows protons also contain charm quarks, which are indeed heavier than protons, like a pot holding a bigger pot inside it.

“That goes against all common sense,” said Dr Juan Rojo of Vrije Universiteit Amsterdam in a statement. “It’s like buying a one-kilogram pack of salt, which then comes out two kilograms of sand.”

However, anyone highly attached to common sense dropped out of quantum mechanics courses in the first six weeks, so Rojo and co-authors were undeterred. In Nature they have revealed that less than one percent of the proton’s mass comes from quarks heavier than the proton.

Aug 19, 2022

Newly discovered magnetic interactions could lead to novel ways to manipulate electron flow

Posted by in categories: computing, particle physics, quantum physics

Newly discovered magnetic interactions in the Kagome layered topological magnet TbMn6Sn6 could be the key to customizing how electrons flow through these materials. Scientists from the U.S. Department of Energy’s Ames National Laboratory and Oak Ridge National Laboratory conducted an in-depth investigation of TbMn6Sn6 to better understand the material and its magnetic characteristics. These results could impact future technology advancements in fields such as quantum computing, magnetic storage media, and high-precision sensors.

Kagomes are a type of material whose structure is named after a traditional Japanese basket weaving technique. The weave produces a pattern of hexagons surrounded by triangles and vice-versa. The arrangement of the atoms in Kagome metals reproduces the weaving pattern. This characteristic causes electrons within the material to behave in unique ways.

Solid materials have controlled by the characteristics of their electronic band structure. The band structure is strongly dependent on the geometry of the atomic lattice, and sometimes bands may display special shapes such as cones. These special shapes, called topological features, are responsible for the unique ways electrons behave in these materials. The Kagome structure in particular leads to complex and potentially tunable features in the electronic bands.

Aug 19, 2022

Shielding Qubits with Chemistry

Posted by in categories: chemistry, quantum physics

The spin state of molecular qubits can be made more stable by changing the chemical environment in which the qubits sit.

Aug 18, 2022

New quantum technology combines free electrons and photons

Posted by in categories: computing, internet, particle physics, quantum physics

Faster computers, tap-proof communication, better car sensors—quantum technologies have the potential to revolutionize our lives just as the invention of computers or the internet once did. Experts worldwide are trying to implement findings from basic research into quantum technologies. To this end, they often require individual particles, such as photons—the elementary particles of light—with tailored properties.

However, obtaining individual particles is complicated and requires intricate methods. In a study recently published in the journal Science, researchers now present a new method that simultaneously generates two individual particles in form of a pair.

Aug 18, 2022

Quantum Physics Could Finally Explain Consciousness, Scientists Say

Posted by in categories: neuroscience, quantum physics

Yet, in the newly-created fields of quantum physics and cognitive science, difficult and troubling mysteries still linger, and occasionally entwine. Why do quantum states suddenly resolve when they’re measured, making it at least superficially appear that observation by a conscious mind has the capacity to change the physical world? What does that tell us about consciousness?

Aug 18, 2022

The Hidden Pattern: A Patternist Philosophy of Mind

Posted by in categories: quantum physics, robotics/AI

The Hidden Pattern presents a novel philosophy of mind, intended to form a coherent conceptual framework within which it is possible to understand the diverse aspects of mind and intelligence in a unified way. The central concept of the philosophy presented is the concept of “pattern”: minds and the world they live in and co-create are viewed as patterned systems of patterns, evolving over time, and various aspects of subjective experience and individual and social intelligence are analyzed in detail in this light. Many of the ideas presented are motivated by recent research in artificial intelligence and cognitive science, and the author’s own AI research is discussed in moderate detail in one chapter. However, the scope of the book is broader than this, incorporating insights from sources as diverse as Vedantic philosophy, psychedelic psychotherapy, Nietzschean and Peircean metaphysics and quantum theory. One of the unique aspects of the patternist approach is the way it seamlessly fuses the mechanistic, engineering-oriented approach to intelligence and the introspective, experiential approach to intelligence.

Aug 18, 2022

Led Team Develops New Approach For Building Quantum Computers

Posted by in categories: computing, quantum physics

Scientists have developed small molecules that protect the “quantumness” of qubits, an innovative step that could help to scale up processing power.

Aug 16, 2022

Breaking: Scientists Have Reversed Time with a Quantum Computer

Posted by in categories: computing, quantum physics

Scientists have reversed the direction of time with a quantum computer.

The breakthrough study seems to contradict basic laws of physics and could alter our understanding of the processes governing the universe.

In a development that also represents a major advance in our understanding of quantum computers, by using electrons and the strange world of quantum mechanics, researchers were able to turn back time in an experiment that is the equivalent of causing a broken rack of pool balls to go back into place.

Aug 16, 2022

Scientists blast atoms with Fibonacci laser to make an “extra” dimension of time

Posted by in categories: computing, particle physics, quantum physics

The new phase of matter, created by using lasers to rhythmically jiggle a strand of 10 ytterbium ions, enables scientists to store information in a far more error-protected way, thereby opening the path to quantum computers that can hold on to data for a long time without becoming garbled. The researchers outlined their findings in a paper published July 20 in the journal Nature (opens in new tab).