Toggle light / dark theme

Over 1,000 Qubits Achieved — Physicists Set World Record for Atom-Based Quantum Computers

Scaling up quantum systems is essential for advancing quantum computing, as their benefits become more apparent with larger systems. Researchers at TU Darmstadt have made significant progress in achieving this goal. The results of their research have now been published in the prestigious journal Optica.

Quantum processors based on two-dimensional arrays of optical tweezers, which are created using focussed laser beams, are one of the most promising technologies for developing quantum computing and simulation that will enable highly beneficial applications in the future. A diverse range of applications from drug development through to optimizing traffic flows will benefit from this technology.

How MIT Is Redefining Quantum Computing With New Entanglement Control

The advance offers a way to characterize a fundamental resource needed for quantum computing.

Entanglement is a form of correlation between quantum objects, such as particles at the atomic scale. This uniquely quantum phenomenon cannot be explained by the laws of classical physics, yet it is one of the properties that explains the macroscopic behavior of quantum systems.

Because entanglement is central to the way quantum systems work, understanding it better could give scientists a deeper sense of how information is stored and processed efficiently in such systems.

Physicists Discover “Topological Hall Effect” in Two-Dimensional Quantum Magnets

Researchers from the High Magnetic Field Center of the Hefei Institutes of Physical Science of the Chinese Academy of Sciences and the University of Science and Technology of China recently introduced the concept of the “Topological Kerr Effect” (TKE). This new concept was developed using the low-temperature magnetic field microscopy system and magnetic force microscopy imaging system available at the steady-state high magnetic field experimental facility.

The findings, published in Nature Physics, hold significant promise for advancing our understanding of topological magnetic structures.

Near-flawless quantum teleportation demonstrated in groundbreaking experiment

TURKU, Finland — Beam me up, Scotty! In a study that seems straight out of a “Star Trek” episode, an international team of researchers has achieved a remarkable feat in the realm of quantum teleportation. They have successfully conducted near-perfect quantum teleportation despite the presence of noise that typically disrupts the transfer of quantum states.

Quantum teleportation is a process in which the state of a quantum particle, or qubit, is transferred from one location to another without physically sending the particle itself. This transfer requires quantum resources, such as entanglement between an additional pair of qubits.

Imagine you have a secret message written on a piece of paper. You want to send this message to someone far away without anyone else seeing it. In quantum teleportation, instead of physically sending the paper, you would make an exact copy of the message at the other location while the original message gets destroyed. This requires some special resources like entanglement, which is like a mysterious connection between two qubits.

Unlocking the Secrets of the Electron Universe: Scientists Discover Path Beyond Ohm’s Law

Researchers at Tohoku University and the Japan Atomic Energy Agency have developed fundamental experiments and theories to manipulate the geometry of the ‘electron universe,’ which describes the structure of electronic quantum states in a manner mathematically similar to the actual universe, within a magnetic material under ambient conditions.

The investigated geometric property – i.e., the quantum metric – was detected as an electric signal distinct from ordinary electrical conduction. This breakthrough reveals the fundamental quantum science of electrons and paves the way for designing innovative spintronic devices utilizing the unconventional conduction emerging from the quantum metric.

Quantum Tunneling Explained With 40-Year-Old Mathematical Discovery

Researchers have successfully used 40-year-old mathematics to explain quantum tunneling, providing a unified approach to diverse quantum phenomena.

Quantum mechanical effects such as radioactive decay, or more generally: ‘tunneling’, display intriguing mathematical patterns. Two researchers at the University of Amsterdam now show that a 40-year-old mathematical discovery can be used to fully encode and understand this structure.

Quantum Physics – Easy and Hard.

/* */