Toggle light / dark theme

‘A first in applied physics’: Breakthrough quantum computer could consume 2,000 times less power than a supercomputer and solve problems 200 times faster

Scientists have built a compact physical qubit with built-in error correction, and now say it could be scaled into a 1,000-qubit machine that is small enough to fit inside a data center. They plan to release this machine in 2031.

Scientists develop new technique for capturing ultra-intense laser pulses in a single shot

Scientists at the University of Oxford have unveiled a pioneering method for capturing the full structure of ultra-intense laser pulses in a single measurement. The breakthrough, published in close collaboration with Ludwig-Maximilian University of Munich and the Max Planck Institute for Quantum Optics, could revolutionize our ability to control light-matter interactions.

This would have transformative applications in many areas, including research into new forms of physics and realizing the extreme intensities required for fusion energy research. The results have been published in Nature Photonics.

Ultra-intense lasers can accelerate electrons to near-light speeds within a single oscillation (or ‘wave cycle’) of the , making them a powerful tool for studying extreme physics. However, their rapid fluctuations and complex structure make real-time measurements of their properties challenging.

Quantum simulation of chemical dynamics achieved for the first time

Researchers at the University of Sydney have successfully performed a quantum simulation of chemical dynamics with real molecules for the first time, marking a significant milestone in the application of quantum computing to chemistry and medicine.

Understanding in real time how atoms interact to form new compounds or interact with light has long been expected as a potential application of quantum technology. Now, quantum chemist Professor Ivan Kassal and Physics Horizon Fellow Dr Tingrei Tan, have shown it is possible using a quantum machine at the University of Sydney.

The innovative work leverages a novel, highly resource-efficient encoding scheme implemented on a trapped-ion quantum computer in the University of Sydney Nanoscience Hub, with implications that could help transform medicine, energy and materials science.


University of Sydney scientists have made a big step towards future design of treatments for skin cancer or improved sunscreen by modelling photoactive chemical dynamics with a quantum computer.

Control of spin qubits at near absolute zero provides path forward for scalable quantum computing

Developing technology that allows quantum information to be both stable and accessible is a critical challenge in the development of useful quantum computers that operate at scale. Research published in the journal Nature provides a pathway for scaling the number of quantum transistors (known as qubits) on a chip from current numbers under 100 to the millions needed to make quantum computation a practical reality. The result is enabled by new cryogenic control electronics that operate at close to absolute zero, developed at the University of Sydney.

Lead researcher Professor David Reilly from the University of Sydney Nano Institute and School of Physics said, “This will take us from the realm of quantum computers being fascinating laboratory machines to the stage where we can start discovering the real-world problems that these devices can solve for humanity.”

The paper is the result of industry cooperation between the University of Sydney and the University of New South Wales through the respective quantum tech spin-out companies Emergence Quantum and Diraq. Professor Reilly’s company, Emergence Quantum, was established this year to commercialize quantum control technologies and other advanced electronics like the chip presented in this Nature paper.

A magnetically levitated particle enables researchers to search for ultralight dark matter

Dark matter, although not visible, is believed to make up most of the total mass of the universe. One theory suggests that ultralight dark matter behaves like a continuous wave, which could exert rhythmic forces that are detectable only with ultra-sensitive quantum instrumentation.

New research published in Physical Review Letters and led by Rice University physicist Christopher Tunnell and postdoctoral researcher Dorian Amaral, the study’s first author and lead analyst, sees the first direct search for ultralight using a magnetically levitated particle.

In collaboration with physicists from Leiden University, the team suspended a microscopic neodymium magnet inside a superconducting enclosure cooled to near absolute zero. The setup was designed to detect subtle oscillations believed to be caused by dark matter waves moving through Earth.