Toggle light / dark theme

In a recent study, a team of researchers at Max Planck Institute for Physics proposed that advanced extraterrestrial civilizations may be using black holes as quantum computers. No matter how advanced a civilization may be, we are all bound by the laws of quantum physics and gravity. So, if aliens are indeed out there, they could be using the geometry of spacetime around a black hole which behaves like a quantum computer. And, as if that weren’t enough, quantum computing is also immune to decryption, making it the perfect tool for secure communication. Roger Penrose, famously proposed that it is possible to extract limitless energy from a black hole by tapping into its Ergosphere. This is a region just outside the event horizon, where matter falling into the black hole forms a disk that spins at nearly the speed of light and emits massive amounts of radiation. Several researchers now suggest that this may be the ultimate power source for advanced civilizations. Subscribe to Science Time: https://www.youtube.com/sciencetime24 #science #shorts #space

Cosmologists believe that multiple universes really exist; they call the whole vast collection, which might even be infinite in number, the ‘multiverse’. But how are all these universes generated? There are several ways, each radically different from the others, each incredibly fascinating, each capable of generating infinite universes.

Free access to Closer to Truth’s library of 5,000 videos: http://bit.ly/376lkKN

Watch more interviews on multiple universes: https://bit.ly/3JrzQkF

Lee Smolin is an American theoretical physicist, a researcher at the Perimeter Institute for Theoretical Physics, and an adjunct professor of physics at the University of Waterloo. He is best known for his work in loop quantum gravity.

Register for free at CTT.com for subscriber-only exclusives: http://bit.ly/2GXmFsP

Closer to Truth, hosted by Robert Lawrence Kuhn and directed by Peter Getzels, presents the world’s greatest thinkers exploring humanity’s deepest questions. Discover fundamental issues of existence. Engage new and diverse ways of thinking. Appreciate intense debates. Share your own opinions. Seek your own answers.

In 1960, Luttinger proposed a universal principle connecting the total capacity of a system for particles with its response to low-energy excitations. Although easily confirmed in systems with independent particles, this theorem remains applicable in correlated quantum systems characterized by intense inter-particle interactions.

However, and quite surprisingly, Luttinger’s theorem has been shown to fail in very specific and exotic instances of strongly correlated phases of matter. The failure of Luttinger’s theorem and its consequences on the behavior of quantum matter are at the core of intense research in condensed matter physics.

An international collaboration, led by Macquarie University scientists, has introduced a new quantum optics technique that can provide unprecedented access to the fundamental properties of light-matter interactions in semiconductors.

The research, published Jan. 15 in the journal Nature Physics, uses a novel spectroscopic technique to explore interactions between photons and electrons at the .

Professor Thomas Volz, co-author of the study and research group leader at Macquarie University’s School of Mathematical and Physical Sciences, says the work has the potential to drive a breakthrough in the global quest for accessible quantum photonic technologies.

The Hilbert space of a physical qubit typically features more than two energy levels. Using states outside the qubit subspace can provide advantages in quantum computation. To benefit from these advantages, individual states of the $d$-dimensional qudit Hilbert space have to be discriminated during readout. We propose and analyze two measurement strategies that improve the distinguishability of transmon qudit states. Based on a model describing the readout of a transmon qudit coupled to a resonator, we identify the regime in hardware parameter space where each strategy is optimal. We discuss these strategies in the context of a practical implementation of the default measurement of a ququart on IBM Quantum hardware whose states are prepared by employing higher-order $X$ gates that make use of two-photon transitions.

A significant breakthrough has been achieved by quantum physicists from Dresden and Würzburg. They’ve created a semiconductor device where exceptional robustness and sensitivity are ensured by a quantum phenomenon. This topological skin effect shields the functionality of the device from external perturbations, allowing for measurements of unprecedented precision.

This remarkable advance results from the clever arrangement of contacts on the aluminum-gallium-arsenide material. It unlocks potential for high-precision quantum modules in topological physics, bringing these materials into the industry’s focus. These results, published in Nature Physics, mark a major milestone.

Quasicrystals are intermetallic materials that have garnered significant attention from researchers aiming to advance condensed matter physics understanding. Unlike normal crystals, in which atoms are arranged in an ordered repeating pattern, quasicrystals have non-repeating ordered patterns of atoms.

Their unique structure leads to many exotic and interesting properties, which are particularly useful for practical applications in spintronics and magnetic refrigeration.

A unique quasicrystal variant, known as the Tsai-type icosahedral quasicrystal (iQC) and their cubic approximant crystals (ACs), display intriguing characteristics. These include long-range ferromagnetic (FM) and anti-ferromagnetic (AFM) orders, as well as unconventional quantum critical phenomenon, to name a few.

It is widely accepted that consciousness or, more generally, mental activity is in some way correlated to the behavior of the material brain. Since quantum theory is the most fundamental theory of matter that is currently available, it is a legitimate question to ask whether quantum theory can help us to understand consciousness. Several approaches answering this question affirmatively, proposed in recent decades, will be surveyed. There are three basic types of corresponding approaches: consciousness is a manifestation of quantum processes in the brain, quantum concepts are used to understand consciousness without referring to brain activity, and matter and consciousness are regarded as dual aspects of one underlying reality. Major contemporary variants of these quantum-inspired approaches will be discussed.

Scientists at Heriot-Watt University in Edinburgh, Scotland, have found a powerful new way to program optical circuits that are critical to the delivery of future technologies such as unhackable communications networks and ultrafast quantum computers.

“Light can carry a lot of information, and optical circuits that compute with light—instead of electricity—are seen as the next big leap in computing technology,” explains Professor Mehul Malik, an experimental physicist and Professor of Physics at Heriot-Watt’s School of Engineering and Physical Sciences.

“But as optical circuits get bigger and more complex, they’re harder to control and make—and this can affect their performance. Our research shows an alternative—and more versatile—way of engineering optical circuits, using a process that occurs naturally in nature.”