Toggle light / dark theme

Researchers Propose a Smaller, more Noise-Tolerant Quantum Circuit for Cryptography

Researchers Propose a #Smaller, more #Noise-#Tolerant #Quantum #Circuit for #Cryptography.

MIT researchers new algorithm is as fast as Regev’s, requires fewer qubits, and has a higher tolerance to quantum noise, making it more feasible to implement…


The most recent email you sent was likely encrypted using a tried-and-true method that relies on the idea that even the fastest computer would be unable to efficiently break a gigantic number into factors.

Quantum computers, on the other hand, promise to rapidly crack complex cryptographic systems that a classical computer might never be able to unravel. This promise is based on a quantum factoring algorithm proposed in 1994 by Peter Shor, who is now a professor at MIT.

But while researchers have taken great strides in the last 30 years, scientists have yet to build a quantum computer powerful enough to run Shor’s algorithm.

IQM Quantum Computers Reaches Production Milestone of 30 Quantum Computers

PRESS RELEASE — IQM Quantum Computers (IQM), a global leader in designing, building, and selling superconducting quantum computers, today announced that it has reached a milestone of producing 30 full-stack quantum computers in its manufacturing facility in Finland.

In addition, IQM has also completed the delivery and installation of six full-stack quantum computers to customers worldwide. IQM’s previously announced customers include VTT Technical Research Centre of Finland, Leibniz Supercomputing Centre (LRZ) in Germany as well as Forschungszentrum Jülich in Germany.

With increasing demand for on-premises quantum computers globally, IQM Quantum Computers Co-CEO Mikko Välimäki highlighted the significance of the manufacturing milestone, stating: “One of the key bottlenecks in quantum computer adoption has been prohibitively high prices. We are the first quantum computer manufacturer with the goal of taking quantum computers to a much wider market with industrialized manufacturing capabilities that help drive the prices lower. Looking ahead, our production line has the capacity to deliver up to 20 full-stack quantum computers a year.”

Theoretical physicists develop method to model a central theory of quantum gravity in the laboratory

Gravity is no longer a mystery to physicists—at least when it comes to large distances. Thanks to science, we can calculate the orbits of planets, predict tides, and send rockets into space with precision. However, the theoretical description of gravity reaches its limits at the level of the smallest particles, the so-called quantum level.

Controlled ‘wobble’ created in nucleus of atom to store quantum data

The atom’s nucleus could safely store quantum data, with controlled wobbling making it possible:


According to the researchers, the spin state or direction of the spin of a nucleus can be used to hold quantum information.

“This magnetism, the “spin” in quantum language, can be seen as a sort of compass needle that can point in various directions. The orientation of the spin at a given time constitutes a piece of quantum information,” the study authors said.

However, even if you store quantum information inside the spin of a nucleus, it’s challenging to read and manipulate the stored information as the nucleus has a tiny size and is influenced by the activity of surrounding particles.

Researchers discover new way to make ‘atomic lasagna’

A research team discovered a method to transform materials with three-dimensional atomic structures into nearly two-dimensional structures – a promising advancement in controlling their properties for chemical, quantum, and semiconducting applications.

The field of materials chemistry seeks to understand, at an atomic level, not only the substances that comprise the world but also how to intentionally design and manufacture them. A pervasive challenge in this field is the ability to precisely control chemical reaction conditions to alter the crystal structure of materials—how their atoms are arranged in space with respect to each other. Controlling this structure is critical to attaining specific atomic arrangements that yield unique behaviors. This process results in novel materials with desirable characteristics for practical applications.

A team of researchers led by the National Renewable Energy Laboratory (NREL), with contributions from the Colorado School of Mines (Mines), National Institute of Standards and Technology, and Argonne National Laboratory, discovered a method to convert materials from their higher-energy (or metastable) state to their lower-energy, stable state while instilling an ordered and nearly two-dimensional arrangement of atoms—a feat that has the potential to unleash promising material properties.

/* */