Toggle light / dark theme

Physicists reveal how a lone spinon emerges in quantum magnetic models

Researchers from the Faculty of Physics at the University of Warsaw and the University of British Columbia have described how a so-called lone spinon—an exotic quantum excitation that is a single unpaired spin—can arise in magnetic models. The discovery deepens our understanding of the nature of magnetism and could have implications for the development of future technologies such as quantum computers and new magnetic materials. The work is published in Physical Review Letters.

Magnetism has been known to humanity since ancient times, when naturally magnetized magnetite was discovered. This finding soon found highly practical applications. The first compasses were created in the in China, and began to be used for navigation.

Today, magnets play an important role in many technologies that surround us, from computer memory and speakers to and medical diagnostics. Interestingly, alongside photography, magnets have also become a common souvenir of travel, occupying a prominent place in our homes.

Cracking the quantum code: Light and glass are set to transform computing

European researchers are developing quantum computers using light and glass, in a collaboration that promises breakthroughs in computing power, battery technology and scientific discovery.

Giulia Acconcia grew up in the picturesque, historic town of Spoleto, nestled in the foothills of Italy’s Apennine Mountains. Already in secondary school, she became fascinated with modern technology—a passion that would shape her future.

Her love of electronics led her to the Polytechnic University of Milan, Italy, where she now finds herself at the forefront of quantum computing research.

Individual defects in superconducting quantum circuits imaged for the first time

Individual defects in superconducting quantum circuits have been imaged for the first time, thanks to research by scientists at the National Physical Laboratory (NPL) in collaboration with Chalmers University of Technology and Royal Holloway University of London.

Light and heavy electrons cooperate in magic-angle superconductors

Electrons play many roles in solid materials. When they are weakly bound and able to travel—i.e., mobile—they can enable electrical conduction. When they are bound, or “heavy,” they can act as insulators. However, in certain solid materials, this behavior can be markedly different, raising questions about how these different types of electrons interact.

In a study just published in Nature Physics, researchers working with Professor of Physics and Applied Physics Amir Yacoby at Harvard examined the interplay between both types of electrons in this material, shedding new on how they may help form novel quantum states.

“Before our work, people could only ask ‘What is the overall ground state?’” said Andrew T. Pierce, one of the paper’s lead authors. Pierce, currently a fellow at Cornell University, was a graduate student in Yacoby’s lab when they began to study this question. What wasn’t clear was the true nature of these different states and how the separate light and heavy electrons joined forces to form them.

Quantum enhancement discovery could improve medical technologies

Technologies such as biomedical imaging and spectroscopy could be enhanced by a discovery in research that involved several institutions, including the University of Glasgow. Scientists have found that two-photon processes, which have applications in the study of Alzheimer’s disease and other nervous system disorders, can be strengthened by quantum light at far higher levels than previously thought possible.

The processes normally require high-intensity light but this can cause samples to be damaged or bleached.

It was suggested many years ago—and has since been demonstrated—that entangled could overcome this limitation. However, it has been widely believed that this quantum enhancement only survives for very faint light, raising doubts about the usefulness of the approach.

Scientists Just Simulated the “Impossible” in Quantum Computing

Quantum computers hold incredible promise, but one major challenge still stands in the way: their struggle to correct errors during calculations. To build truly reliable quantum machines, scientists need to simulate these quantum processes on regular computers to make sure they’re working correct

Mining the Moon begins: US firm’s robot to extract rare helium-3 and launch payloads back to Earth for futuristic energy use

In a bold move that could transform the future of clean energy and quantum computing, a Seattle-based startup, Interlune, is taking the first steps toward mining the Moon for a rare isotope called helium-3. This new venture has the potential to challenge the boundaries of technology, as well as the frameworks for space exploration and international resource management.

The high-tech wizardry of integrated photonics

Inspired by the “Harry Potter” stories and the Disney Channel show “Wizards of Waverly Place,” 7-year-old Sabrina Corsetti emphatically declared to her parents one afternoon that she was, in fact, a wizard.

“My dad turned to me and said that, if I really wanted to be a wizard, then I should become a physicist. Physicists are the real wizards of the world,” she recalls.

That conversation stuck with Corsetti throughout her childhood, all the way up to her decision to double-major in physics and math in college, which set her on a path to MIT, where she is now a graduate student in the Department of Electrical Engineering and Computer Science.

While her work may not involve incantations or magic wands, Corsetti’s research centers on an area that often produces astonishing results: integrated photonics. A relatively young field, integrated photonics involves building computer chips that route light instead of electricity, enabling compact and scalable solutions for applications ranging from communications to sensing.


MIT graduate student Sabrina Corsetti is exploring the cutting edge of integrated photonics, which involves building computer chips that route light instead of electricity. Her projects have included a chip-sized 3D printer and miniaturized optical systems for quantum computing.

Improving randomness may be the key to more powerful quantum computers

Understanding randomness is crucial in many fields. From computer science and engineering to cryptography and weather forecasting, studying and interpreting randomness helps us simulate real-world phenomena, design algorithms and predict outcomes in uncertain situations.

Randomness is also important in quantum computing, but generating it typically involves a large number of operations. However, Thomas Schuster and colleagues at the California Institute of Technology have demonstrated that quantum computers can produce randomness much more easily than previously thought.

And that’s good news because the research could pave the way for faster and more efficient quantum computers.