Menu

Blog

Archive for the ‘quantum physics’ category: Page 189

Aug 13, 2023

Sandia shows quantum breakthrough promise with new ion trap

Posted by in categories: computing, quantum physics

Sandia’s 20 year experience in building and testing ion traps has culminated in its latest offering: the Enchilada Trap.

Sandia National Laboratories revealed the Enchilada Trap, a groundbreaking ion trap central to some quantum computers, in a press release.

This innovative device promises to reshape the landscape of quantum computing, providing researchers with a potent tool to explore the experimental and transformative field of quantum computation.

Aug 12, 2023

Can an ancient board game solve quantum problems?

Posted by in categories: engineering, entertainment, quantum physics

The central problem quantum state engineering is trying to solve, says Ryan Glasser is “what do I need to do to get my quantum system to be in the state I desire?” Researchers hope ManQala, a version of the ancient game mancala, has answers. (Credit: Tobias Tullius/Unsplash)

The game mancala may have originated as far back as 6,000 BCE in Jordan and is played around the world to this day. It consists of stones that players move between a series of small pits on a wooden game board. The point of the game is to get all the stones into the last pit at the end of the board.

Aug 12, 2023

Is Quantum Mechanics a Science? Here’s What Karl Popper Thinks

Posted by in categories: quantum physics, science

The crisis of understanding, according to Popper, arose in physics along with the Copenhagen interpretation, or, more precisely, from the point of view of Bohr and Heisenberg on the status of quantum mechanics.

In his opinion, quantum mechanics should be interpreted as the last revolution in physics, since the inherent boundaries of knowledge were reached in it.

Aug 12, 2023

Quantum Echoes: A Revolutionary Method to Store Information as Sound Waves

Posted by in categories: computing, quantum physics

Quantum computing, just like traditional computing, requires a method to store the information it uses and processes. In the computer you’re using right now, information—whether it be photos of your dog, a reminder about a friend’s birthday, or the words you’re typing into your browser’s address bar—must be stored somewhere. Quantum computing, a relatively new field, is still exploring where and how to store quantum information.

In a paper published recently in the journal Nature Physics

As the name implies, Nature Physics is a peer-reviewed, scientific journal covering physics and is published by Nature Research. It was first published in October 2005 and its monthly coverage includes articles, letters, reviews, research highlights, news and views, commentaries, book reviews, and correspondence.

Aug 12, 2023

DARPA Aims to Develop New Synthetic Quantum Materials That Could Radically Improve Quantum Computing

Posted by in categories: computing, nanotechnology, quantum physics

The Defense Advanced Research Projects Agency (DARPA) has announced a new program it says will develop synthetic metamaterials that could lead to breakthroughs in quantum computing and information science.

Called the Synthetic Quantum Nanostructures program, or SynQuaNon, the new DARPA initiative “aims to address this challenge with a fundamental science effort that seeks to develop synthetic metamaterials to enable enhanced functionalities and novel capabilities,” read a statement issued by the agency this week.

The program aims to produce a range of new quantum materials that will have a variety of uses in quantum computing and other information science applications.

Aug 12, 2023

MIT scientists conceive of quantum rods for 3D screens

Posted by in categories: biotech/medical, nanotechnology, quantum physics, virtual reality

They use a process called DNA origami.

This is according to a press release by the institution published on Friday.


TV screens equipped with quantum rods have the ability to generate 3D images for virtual reality devices. Now, MIT engineers have conceived of a way to precisely assemble arrays of quantum rods in the devices using scaffolds made of folded DNA that allow depth and dimensionality to be added to virtual scenes.

Continue reading “MIT scientists conceive of quantum rods for 3D screens” »

Aug 12, 2023

Zap with Microwaves to Reverse Spin

Posted by in categories: energy, quantum physics

Irradiating a uniaxial magnetic system with a specific sequence of microwave pulses can induce in the system quantum oscillations that cause the material’s spins to flip back and forth.

To make higher-density magnetic data systems, researchers are looking to crystalline materials that have switchable magnetic orientations. But for some of these materials, switching the magnetization direction—for example from spin-up to spin-down—requires overcoming a large energy barrier. Now Seiji Miyashita at the University of Tokyo and Bernard Barbara of the Institut Néel, CNRS Grenoble, France, predict that experimentalists could reverse a material’s magnetization by applying to it a specific sequence of microwave or optical-frequency pulses [1]. The approach could find applications in quantum information storage.

To reverse the spin of a magnetic material, researchers can apply high temperatures or high magnetic fields to push the system over the potential energy barrier that separates its spin states. Another option is to induce resonant quantum tunneling to move electrons through the barrier. Miyashita and Barbara propose a further method that bypasses the constraints associated with the application of intense magnetic fields in these previous methods.

Aug 11, 2023

New Theory Suggests Quantum Entanglement And Wormholes Are Linked Together

Posted by in categories: computing, cosmology, particle physics, quantum physics

Practical applications for quantum entanglement have already been proposed, as entangled particles have been suggest for use in powerful quantum computers and “impossible” to crack networks. Now, it seems quantum entanglement may be linked to wormholes.

Entangled wormholes.

Aug 11, 2023

Arrays of quantum rods could enhance TVs or virtual reality devices, research suggests

Posted by in categories: biotech/medical, nanotechnology, quantum physics, virtual reality

Flat screen TVs that incorporate quantum dots are now commercially available, but it has been more difficult to create arrays of their elongated cousins, quantum rods, for commercial devices. Quantum rods can control both the polarization and color of light, to generate 3D images for virtual reality devices.

Using scaffolds made of folded DNA, MIT engineers have come up with a new way to precisely assemble arrays of quantum rods. By depositing quantum rods onto a DNA scaffold in a highly controlled way, the researchers can regulate their orientation, which is a key factor in determining the polarization of light emitted by the array. This makes it easier to add depth and dimensionality to a virtual scene.

“One of the challenges with quantum rods is: How do you align them all at the nanoscale so they’re all pointing in the same direction?” says Mark Bathe, an MIT professor of biological engineering and the senior author of the new study. “When they’re all pointing in the same direction on a 2D surface, then they all have the same properties of how they interact with light and control its polarization.”

Aug 11, 2023

Quantum Computing in AI: The Revolutionary Synergy Between Two Technologies

Posted by in categories: climatology, cybercrime/malcode, education, finance, information science, quantum physics, robotics/AI, sustainability

Experience the captivating world of Quantum Computing in AI through this thrilling video! Delve into the groundbreaking realm of Quantum Computers and its revolutionary synergy with Artificial Intelligence, leading us into an era of technological revolution.
The first part of the video unravels the enigmatic concept of Quantum Computing, explaining its complex principles in a way that even beginners can understand. Watch the video to discover the magic of quantum bits (qubits) and superposition as they challenge the norms of classical computing.
Are you curious about what Quantum Supremacy is? Or what Quantum Computing in AI can truly achieve? This intriguing section showcases the extraordinary capabilities of these computing marvels, delving into the fascinating world of quantum supremacy and how it empowers AI.
Moving forward, embark on a journey into Quantum Machine Learning, a cutting-edge AI paradigm that combines Quantum Computing with Artificial Intelligence. Prepare to be amazed by its ability to push the boundaries of data processing, learning, and prediction and embarking revolution in Neural Network and Natural Language Processing. The future of quantum AI is revolutionary; you should not miss it!
The video does not stop there! We also explore real-world applications of Quantum AI, demonstrating how this technology is revolutionizing industries like healthcare, cybersecurity, finance, education and more, with unprecedented efficiency and precision.
The video sheds light on Quantum AI’s potential to solve once-unthinkable problems in areas such as molecular simulation, precise optimization, predictions, and personalization. We discover how AI with Quantum Computing solve challenges which were thought impossible to crack.
This video is a comprehensive resource for anyone interested by Quantum Computing, AI, and their synergy. Join us as we embark on this exciting journey into the revolutionary synergy between two technologies. Whether you’re a quantum computing enthusiast, an AI lover, or simply enjoy tech insights, don’t forget to Like, Comment, and Subscribe to stay informed about the latest trends!
#quantumcomputing.
#artificalintelligence.
#ai.
#futureofai.
#technology.
Chapters.
0:00-Introduction.
0:50-Simple Concepts of Quantum Computing and AI
2:30-Ways How will Quantum computing affect AI?
2:34–1) Improvement in Machine Learning Algorithm.
4:04–2) Enhanced Neural Network.
5:15–3) Advancing Natural Language Processing.
6:27–4) Solving Complex Issues.
7:02-Usability of Quantum AI Computing.
7:23–1) Fact-Checkers for AI Chatbots.
8:08–2) Benefits for Life Science.
8:50–3) Cybersecurity.
9:21–4) Impact on Education.
10:08–5) Autonomous Vehicle.
11:01–6) Logistics Industry.
11:55–7) Climate Change.
12:52-ConclusionSubscribe for more content in the fascinating field of Artificial Intelligence.
*******************
Welcome to AI TechXplorer, your premier destination for cutting-edge insights into AI trends and technology. As a channel dedicated to the forefront of artificial intelligence, we delve deep into the world of AI, latest AI trends and technology, providing research-driven insights into development of AI tools, platforms, AI news and updates in artificial general intelligence (AGI) and robotics.
Our commitment to delivering quality content begins with our rigorous research approach. Understanding that AI can be an intimidating field for newcomers, we make it our mission to provide clear and accessible explanations. Whether you are a seasoned AI enthusiast or someone who has just discovered the world of AI, our videos break down complex concepts, developments, and breakthroughs into digestible and relatable explanations. We believe that knowledge should be inclusive and approachable, and we are dedicated to making AI understandable for all.
We keep a keen eye on the latest advancements in AI, ensuring that you stay informed about the cutting-edge developments and their practical applications. By highlighting the significance of these advancements within our society, we strive to bridge the gap between AI and its real-world implications, ultimately fostering a greater appreciation for the transformative potential of AI.
🔔 Join us at AI AI TechXplorer as we embark on a journey through the realms of artificial intelligence. Together, we will uncover the latest AI trends, explore groundbreaking technologies, and unravel the mysteries of artificial general intelligence. Subscribe to our channel today and be part of the ever-evolving world of AI. 🔔.