Toggle light / dark theme

Quantum Maze!? The Supermaze Hypothesis Explained!

Are black holes really cosmic shredders—or are they complex quantum structures storing everything they consume? Discover the revolutionary Supermaze Hypothesis and Fuzzball Theory in this deep dive into black hole physics, quantum mechanics, and string theory. This could change everything we know about the universe!

Paper link : https://arxiv.org/abs/2312.

Chapters:
00:00 Introduction.
00:44 Inside the Supermaze – A New Perspective from String Theory.
02:42 The Fuzzball Revolution – Solving the Information Paradox.
04:43 Scientific Debate and the Road to the Theory of Everything.
06:57 Outro.
07:16 Enjoy.

MUSIC TITLE: Starlight Harmonies.

MUSIC LINK: https://pixabay.com/music/pulses-star… our website for up-to-the-minute updates: www.nasaspacenews.com Follow us Facebook: / nasaspacenews Twitter: / spacenewsnasa Join this channel to get access to these perks: / @nasaspacenewsagency #NSN #NASA #Astronomy#BlackHole #SupermazeHypothesis #FuzzballTheory #QuantumPhysics #StringTheory #MTheory #EventHorizon #HawkingRadiation #InformationParadox #CosmicMysteries #QuantumGravity #Branes #QuantumMaze #PhysicsExplained #SpaceTime #BlackHoleTheory #Astrophysics #Cosmology #QuantumUniverse #TheoryOfEverything #BlackHoleInfoParadox #StephenHawking #SamirMathur #NicholasWarner #QuantumEntanglement #ScienceExplained #GravitationalWaves #LIGO #EventHorizonTelescope #QuantumReality.
Visit our website for up-to-the-minute updates:
www.nasaspacenews.com.

Follow us.

Scientists Think the Universe Is a Quantum Computer — Here’s The Physics Behind It!

There is no “outside.” No other system. The universe is not on a computer. It is the computer. It is the thing performing the computation. It doesn’t need anyone watching it. It doesn’t need a server farm or a control panel. It simply is what it is: a system that processes information according to its own rules.
In other words, when we talk about the universe as a quantum computer, we’re not saying it’s pretending to be real. We’re saying this is what real is.

1:19 Reality as Code.
8:35 What Is a Quantum Computer, Anyway?
13:37 Evidence and Models That Support the Quantum Universe Idea.
20:04 What Would It Mean If the Universe Is a Quantum Computer?
26:14 Could We Simulate the Universe from Within It?
32:37 The Dark Implications.
39:53 Is This the Best Description We’ll Ever Get?

Quantum Telepathy Goes Real: How Lasers and Ions Outsmarted Logic

Physicists have successfully played a mind-bending “quantum game” using a real-world quantum computer, in which lasers shuffle around ions on a chip to explore the strange behavior of qubits. By creating a special, knotted structure of entangled particles, the team demonstrated that today’s quant

Physicists Found an Entirely New Way to Measure Time

Determining the passage of time in our world of ticking clocks and oscillating pendulums is a simple case of counting the seconds between ‘then’ and ‘now’

Down at the quantum scale of buzzing electrons, however, ‘then’ can’t always be anticipated. Worse still, ‘now’ often blurs into a haze of vagueness. A stopwatch simply isn’t going to work for some scenarios.

A potential solution could be found in the very shape of the quantum fog itself, according to a 2022 study by researchers from Uppsala University in Sweden.

Tiny Diamonds, Big Spark: A Laser-Free Leap in Quantum Spin Detection

A research team at HZB has developed a clever technique to read quantum spin states in diamonds using electrical signals instead of light. This breakthrough could dramatically simplify quantum sensors and computing hardware.

Diamonds that contain specific optically active defects, known as color centers, can serve as highly sensitive sensors or as qubits for quantum computers, with quantum information stored in their electron spin states. Traditionally, reading these spin states requires optical methods, which are often complex and difficult to implement. Now, researchers at HZB have developed a more streamlined approach: using photovoltage to detect the spin states of individual defects. This method could pave the way for much smaller and more compact quantum sensors.

Harnessing Defects for Spin States.

/* */