Menu

Blog

Archive for the ‘quantum physics’ category: Page 17

Aug 6, 2024

Quantum algorithm for photovoltaic maximum power point tracking

Posted by in categories: energy, information science, quantum physics

They also found that, although the power achieved by the conventional PSO algorithm was approximately 0.15% higher than that attained by the QPSO algorithm under the same conditions, the QPSO was able to beat the conventional PSO in more challenging conditions.

“Specifically, the quantum algorithm generates 3.33% more power in higher temperature tests and 0.89% more power in partial shading tests,” they emphasized. “Additionally, the quantum algorithm displays lower duty cycles, with a reduction of 3.9% in normal operating conditions, 0.162% in high-temperature tests, and 0.54% in partial shading tests.”

Aug 6, 2024

Long-Standing Quantum Problem Finally Solved

Posted by in categories: computing, particle physics, quantum physics

An answer to a decades-old question in the theory of quantum entanglement raises more questions about this quirky phenomenon.

Physicists have a long list of open problems they consider important for advancing the field of quantum information. Problem 5 asks whether a system can exist in its maximally entangled state in a realistic scenario, in which noise is present. Now Julio de Vicente at Carlos III University of Madrid has answered this fundamental quantum question with a definitive “no” [1]. De Vicente says that he hopes his work will “open a new research avenue within entanglement theory.”

From quantum sensors to quantum computers, many technologies require quantum mechanically entangled particles to operate. The properties of such particles are correlated in a way that would not be possible in classical physics. Ideally, for technology applications, these particles should be in the so-called maximally entangled state, one in which all possible measures of entanglement are maximized. Scientists predict that particles can exist in this state in the absence of experimental, environmental, and statistical noise. But it was unclear whether the particles could also exist in a maximally entangled state in real-world scenarios, where noise is unavoidable.

Aug 6, 2024

Visualizing Atom Currents in Optical Lattices

Posted by in categories: particle physics, quantum physics

A new manipulation technique could enable the realization of more versatile quantum simulators.

The Born rule, formulated almost a century ago, says that measuring a system yields an outcome whose probability is determined by the wave-function amplitude. As if by magic, preparing a quantum system in the same way and performing the same measurement can produce different results. For a long time, the Born rule’s probabilistic nature was more of a theoretical concept. But with the advent of quantum simulators, it has become an experimental reality. So-called snapshots—different measurement outcomes of the same quantum many-body state—are routinely measured. In the case of cold atoms in optical lattices, such snapshots are images that show with single-site resolution whether an atom is present or not. Now Alexander Impertro of the Ludwig Maximilian University of Munich and his collaborators have devised a way to take snapshots not just of atoms’ whereabouts but also of properties analogous to currents and local kinetic energy in crystals [1].

Aug 6, 2024

Physicists develop new method to combine conventional internet with the quantum internet

Posted by in categories: internet, quantum physics

“To make the a reality, we need to transmit entangled photons via fiber optic networks,” says Prof. Dr. Michael Kues, Head of the Institute of Photonics and Board Member of the PhoenixD Cluster of Excellence at Leibniz University Hannover.

“We also want to continue using optical fibers for conventional data transmission. Our is an important step to combine the conventional internet with the quantum internet.”

In their experiment, the researchers demonstrated that the entanglement of photons is maintained even when they are sent together with a laser pulse. The research results were published in Science Advances.

Aug 6, 2024

New light source emits bright, entangled photons for quantum communication

Posted by in categories: computing, particle physics, quantum physics

Imagine the possibility of sending messages that are completely impervious to even the most powerful computers. This is the incredible promise of quantum communication, which harnesses the unique properties of light particles known as photons.

Aug 5, 2024

New Quantum Experiments to Test Simulation Hypothesis and its Connection to Consciousness

Posted by in categories: computing, neuroscience, quantum physics, virtual reality

Science: Physicists Will conduct experiments to verify if we live in the real reality or if we live in a virtual reality. In a computer simulation. In a dream. Or if not.


Researchers at California State Polytechnic University (CalPoly), Pomona are carrying out a series of quantum physics experiments expected to provide strong scientific evidence that we live in a computer simulated virtual reality. — PR13031782.

Aug 5, 2024

A Breakthrough on the Edge: One Step Closer to Topological Quantum Computing

Posted by in categories: computing, particle physics, quantum physics

Researchers at the University of Cologne have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing / publication in Nature Physics.

A team of experimental physicists led by the University of Cologne have shown that it is possible to create superconducting effects in special materials known for their unique edge-only electrical properties. This discovery provides a new way to explore advanced quantum states that could be crucial for developing stable and efficient quantum computers. Their study, titled ‘Induced superconducting correlations in a quantum anomalous Hall insulator’, has been published in Nature Physics.

Superconductivity is a phenomenon where electricity flows without resistance in certain materials. The quantum anomalous Hall effect is another phenomenon that also causes zero resistance, but with a twist: it is confined to the edges rather than spreading throughout. Theory predicts that a combination of superconductivity and the quantum anomalous Hall effect will give rise to topologically-protected particles called Majorana fermions that will potentially revolutionize future technologies such as quantum computers. Such a combination can be achieved by inducing superconductivity in the edge of a quantum anomalous Hall insulator that is already resistance-free. The resultant chiral Majorana edge state, which is a special type of Majorana fermions, is a key to realizing ‘flying qubits’ (or quantum bits) that are topologically protected.

Aug 5, 2024

Cutting-Edge Quantum Sensor Unveils the Hidden Atomic World

Posted by in categories: biotech/medical, nanotechnology, quantum physics

A new quantum sensor developed by researchers from Korea and Germany can measure magnetic fields at the atomic scale with high precision. This technology uses a single molecule for detection, offering superior resolution and the potential for significant advancements in quantum materials and molecular systems analysis.

In a scientific breakthrough, an international research team from Korea’s IBS Center for Quantum Nanoscience (QNS) and Germany’s Forschungszentrum Jülich developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.

“You have to be small to see small.” —

Aug 4, 2024

Quantum Consciousness, AI, & You: What Happens When Machines Become Sentient?

Posted by in categories: quantum physics, robotics/AI

As advances in AI and Machine Learning accelerate, the once-fictional idea of machines gaining Consciousness is becoming a pressing reality. This video explores the potential risks and questions how prepared Hue-BEings are for this new form of Consciousness. From self-driving cars to Intelligent machinery, we delve into the Evolution and implications of AI emulating Hue-BEing interactions. What type of Future will we all Build, Together?

Aug 4, 2024

“Impossible” Neutron Breakthrough is Made, Building on Famous Double-Slit Experiment

Posted by in categories: innovation, quantum physics

A breakthrough that builds on the effects observed in the famous “double slit” experiment could allow physicists a greater ability to observe quantum effects within gravitational fields, according to new research published online.

A team of Italian scientists says they have successfully conducted neutron interferometry using more than one silicon crystal in a physics first that once seemed impossible, based on past attempts.

Page 17 of 800First1415161718192021Last