Toggle light / dark theme

Researchers at TMOS, the ARC Centre of Excellence for Transformative Meta-Optical Systems, and their collaborators at RMIT University have developed a new 2D quantum sensing chip using hexagonal boron nitride (hBN) that can simultaneously detect temperature anomalies and magnetic field in any direction in a new, groundbreaking thin-film format.

In a paper released in Nature Communications (“Multi-species optically addressable spin defects in a van der Waals material”), they detail a sensor that is significantly thinner than current quantum technology for magnetometry, paving the way for cheaper, more versatile quantum sensors.

Experimental set-up of hBN quantum sennsor. (Image: RMIT University)

“Quantum computing is not going to be just slightly better than the previous computer, it’s going to be a huge step forward,” he said.

His company produces the world’s first dedicated quantum decoder chip, which detects and corrects the errors currently holding the technology back.

Building devices “that live up to the technology’s incredible promise requires a massive step change in scale and reliability, and that requires reliable error correction schemes”, explained John Martinis, former quantum computing lead at Google Quantum AI.

A team of physicists has successfully created superconducting properties in materials known for conducting electricity only at their edges, marking a potential leap forward in quantum computing technology.

This achievement, which has eluded researchers for over a decade, was made possible through meticulous control of the experimental conditions.

Quantum Breakthroughs

“The moment when we wrote down the terms of this equation and saw that it all clicked together, it felt pretty incredible,” Wordsworth said. “It’s a result that finally shows us how directly the quantum mechanics links to the bigger picture.”

In some ways, he said, the calculation helps us understand climate change better than any computer model. “It just seems to be a fundamentally important thing to be able to say in a field that we can show from basic principles where everything comes from.”

Researchers at Penn State are working on advanced electronics using something called kink states, which are special pathways for electrons in materials. These paths could help create networks for quantum information, which is essential for the next generation of electronics. Credit: SciTechDaily.com.

Researchers at Penn State are developing advanced quantum electronics using kink states, which are unique electron pathways in semiconducting materials.

These states could potentially form the backbone of a quantum interconnect network, crucial for transmitting quantum information efficiently. The team has made significant advancements in controlling these states through innovative material combinations and device designs, enhancing the potential for scalable quantum electronics.

“We can rewind to a previous scene or skip several scenes ahead.”

An worldwide team of scientists claims to have found a means to speed up, slow down, and even reverse the clock of a given system by taking use of the peculiar qualities of the quantum universe, as reported by Spanish newspaper El País.

The scientists from the Austrian Academy of Sciences and the University of Vienna presented their findings in six separate papers. The basic principles of physics do not transfer intuitively onto the subatomic world, which is made up of quantum particles known as qubits, which can exist in several states at the same time, a phenomenon known as quantum entanglement.