Menu

Blog

Archive for the ‘quantum physics’ category: Page 14

May 28, 2024

The Quantum Twist: Unveiling the Proton’s Hidden Spin

Posted by in categories: computing, particle physics, quantum physics

New research combining experimental and computational approaches provides deeper insights into proton spin contributions from gluons.

Nuclear physicists have been tirelessly exploring the origins of proton spin. A novel approach, merging experimental data with cutting-edge calculations, has now illuminated the spin contributions from gluons—the particles that bind protons. This advancement also sets the stage for three-dimensional imaging of the proton structure.

Joseph Karpie, a postdoctoral associate at the Center for Theoretical and Computational Physics (Theory Center) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility, led this groundbreaking research.

May 27, 2024

Quantum ‘arrow of time’ suggests early universe had no entanglement

Posted by in category: quantum physics

One way to explain why time only moves forward is the quantum arrow of time, and it has major implications for both the universe’s early period and its eventual demise.

By Leah Crane

May 25, 2024

Revolutionary Qubit Technology Paves Way for Practical Quantum Computer

Posted by in categories: computing, quantum physics

Advancements in qubit technology at the University of Basel show promise for scalable quantum computing, using electron and hole spins to achieve precise qubit control and interactions.

The pursuit of a practical quantum computer is in full swing, with researchers worldwide exploring a wide array of qubit technologies. Despite extensive efforts, there is still no consensus on which type of qubit best maximizes the potential of quantum information science.

Qubits are the foundation of a quantum computer. They’re responsible for processing, transferring, and storing data. Effective qubits must reliably store and rapidly process information. This demands stable, swift interactions among a large number of qubits that external systems can accurately control.

May 25, 2024

Physicists Uncover Unusual New Quantum State Known As “Dirac Spin Liquid”

Posted by in categories: computing, particle physics, quantum physics

Researchers at the University of Hong Kong discovered Dirac spinons in the material YCu3-Br, providing evidence of a quantum spin liquid state and potentially advancing applications in quantum computing and high-temperature superconductivity.

Quasiparticles are fascinating entities that arise from collective behavior within materials and can be treated as a group of particles. Specifically, Dirac spinons are anticipated to exhibit unique characteristics similar to Dirac particles in high-energy physics and Dirac electrons in graphene and quantum moiré materials, such as a linear dispersion relation between energy and momentum. However, spin-½ charge-neutral quasiparticles had not been observed in quantum magnets until this work.

‘“To find Dirac spinons in quantum magnets has been the dream of generations of condensed matter physicists; now that we have seen the evidence of them, one can start to think about the countless potential applications of such highly entangled quantum material. Who knows, maybe one-day people will build quantum computers with it, just as people have been doing in the past half-century with silicon,’” said Professor Meng, HKU physicist and one of the corresponding authors of the paper.

May 25, 2024

Quantum neuroelectronic devices emulate brain synapses, show potential to mitigate cognitive decline

Posted by in categories: neuroscience, quantum physics

Innovative quantum neuroelectronic devices mimic key functions of brain synapses, demonstrating promise for reducing effects of age-related cognitive decline.

May 25, 2024

More than spins: Exploring uncharted territory in quantum devices

Posted by in categories: computing, particle physics, quantum physics

Many of today’s quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the ‘0’ and the ‘1’. However, unlike classical bits, qubits can exist in superpositions, meaning they can simultaneously be in a combination of the ‘0’ and ‘1’ states. Spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations.

In a new publication in Physical Review Letters (“Fast quantum state preparation and bath dynamics using non-Gaussian variational Ansatz and quantum optimal control”), researchers in Amsterdam demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state.

Quantum devices use the quirky behaviour of quantum particles to perform tasks that go beyond what ‘classical’ machines can do, including quantum computing, simulation, quantum sensing, quantum communication and quantum metrology. These devices can take many forms, such as a collection of superconducting circuits, or a lattice of atoms or ions held in place by lasers or electric fields.

May 25, 2024

How a tiny device could lead to big physics discoveries and better lasers

Posted by in categories: biotech/medical, nanotechnology, quantum physics

Researchers at Rensselaer Polytechnic Institute have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings, published in the journal Nature Nanotechnology (“Topological valley Hall polariton condensation”), could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.

The device is made of a special kind of material called a photonic topological insulator. A photonic topological insulator can guide photons, the wave-like particles that make up light, to interfaces specifically designed within the material while also preventing these particles from scattering through the material itself.

Because of this property, topological insulators can make many photons coherently act like one photon. The devices can also be used as topological “quantum simulators,” miniature laboratories where researchers can study quantum phenomenon, the physical laws that govern matter at very small scales.

May 24, 2024

Cloud Computing under the Cover of Quantum

Posted by in categories: business, computing, quantum physics

A secure method for cloud-based quantum computing harnesses the power of quantum physics to keep data confidential.

Progress in quantum technology has been swift, but we still are far from the day when everyone will have a quantum computer in their house or at their business. The early stages of quantum computing will likely rely on a quantum version of the “cloud,” where users send data and computing tasks to a state-of-the-art quantum machine hosted by Google, IBM, or another company. But is that approach secure? It can be, thanks to the impenetrable secrecy of quantum-based protocols. A recent experiment demonstrates a version of “blind quantum computing” using trapped ions [1]. The protocol is scalable, meaning it offers potential to be incorporated into larger and larger quantum computing systems.

Quantum computers have the potential to be game changers in computationally intensive tasks such as drug discovery and material design. In these highly competitive sectors, there would be concerns about using a cloud-based quantum computer. “A company searching for a new wonder drug or for a high-performance battery material wouldn’t want to reveal confidential secrets,” explains Peter Drmota of the University of Oxford. However, it has been shown—in theory—that one can perform computations on a remote quantum computer while hiding the data and the operations done on such data. “Blind quantum computing could give a client confidence to use whoever’s quantum computer,” Drmota says.

May 24, 2024

Researchers describe spin-boson systems to configure quantum devices

Posted by in categories: computing, particle physics, quantum physics

In a new publication in Physical Review Letters, researchers in Amsterdam demonstrate a way to describe spin-boson systems and use this to efficiently configure in a desired state.

Quantum devices use the quirky behavior of quantum particles to perform tasks that go beyond what “classical” machines can do, including quantum computing, simulation, sensing, communication and metrology. These devices can take many forms, such as a collection of superconducting circuits, or a lattice of atoms or ions held in place by lasers or electric fields.

Regardless of their physical realization, quantum devices are typically described in simplified terms as a collection of interacting two-level or spins. However, these spins also interact with other things in their surroundings, such as light in superconducting circuits or oscillations in the lattice of atoms or ions. Particles of light (photons) and vibrational modes of a lattice (phonons) are examples of bosons.

May 24, 2024

How a world record ‘squeeze’ could offer comfort for dark matter hunters

Posted by in categories: cosmology, particle physics, quantum physics

UNSW quantum engineers have developed a new amplifier that could help other scientists search for elusive dark matter particles.

Page 14 of 763First1112131415161718Last