Menu

Blog

Archive for the ‘quantum physics’ category: Page 122

Jan 19, 2024

Unlocking the secrets of quasicrystal magnetism: Revealing a novel magnetic phase diagram

Posted by in categories: particle physics, quantum physics

Quasicrystals are intermetallic materials that have garnered significant attention from researchers aiming to advance condensed matter physics understanding. Unlike normal crystals, in which atoms are arranged in an ordered repeating pattern, quasicrystals have non-repeating ordered patterns of atoms.

Their unique structure leads to many exotic and interesting properties, which are particularly useful for practical applications in spintronics and magnetic refrigeration.

A unique quasicrystal variant, known as the Tsai-type icosahedral quasicrystal (iQC) and their cubic approximant crystals (ACs), display intriguing characteristics. These include long-range ferromagnetic (FM) and anti-ferromagnetic (AFM) orders, as well as unconventional quantum critical phenomenon, to name a few.

Jan 19, 2024

Quantum Approaches to Consciousness

Posted by in categories: neuroscience, quantum physics

It is widely accepted that consciousness or, more generally, mental activity is in some way correlated to the behavior of the material brain. Since quantum theory is the most fundamental theory of matter that is currently available, it is a legitimate question to ask whether quantum theory can help us to understand consciousness. Several approaches answering this question affirmatively, proposed in recent decades, will be surveyed. There are three basic types of corresponding approaches: consciousness is a manifestation of quantum processes in the brain, quantum concepts are used to understand consciousness without referring to brain activity, and matter and consciousness are regarded as dual aspects of one underlying reality. Major contemporary variants of these quantum-inspired approaches will be discussed.

Jan 19, 2024

Scientists compute with light inside hair-thin optical fiber

Posted by in categories: computing, engineering, quantum physics

Scientists at Heriot-Watt University in Edinburgh, Scotland, have found a powerful new way to program optical circuits that are critical to the delivery of future technologies such as unhackable communications networks and ultrafast quantum computers.

“Light can carry a lot of information, and optical circuits that compute with light—instead of electricity—are seen as the next big leap in computing technology,” explains Professor Mehul Malik, an experimental physicist and Professor of Physics at Heriot-Watt’s School of Engineering and Physical Sciences.

“But as optical circuits get bigger and more complex, they’re harder to control and make—and this can affect their performance. Our research shows an alternative—and more versatile—way of engineering optical circuits, using a process that occurs naturally in nature.”

Jan 19, 2024

Quantum Computing Could Make Cancer More Like The Common Cold

Posted by in categories: biotech/medical, computing, quantum physics

“In recent years, the clinical development of liquid biopsies for cancer, a revolutionary screening tool, has created great optimism,” write Liz Kwo and Jenna Aronson in the American Journal of Managed Care.

At present, liquid biopsies can detect more than 50 different types of cancer. A standard visit to the doctor may eventually be able to detect cancers years before they become lethal.

In the future, even the toilet in your bathroom may be sensitive enough to detect the signs of cancer cells, enzymes and genes circulating in your bodily fluids, so that cancer becomes no more lethal than the common cold. Every time you go to the bathroom, you might be tested for cancer. The “smart toilet” might become our first line of defense.

Jan 19, 2024

Researchers reverse the flow of time on IBM’s quantum computer

Posted by in categories: computing, quantum physics

We all mark days with clocks and calendars, but perhaps no timepiece is more immediate than a mirror. The changes we notice over the years vividly illustrate science’s “arrow of time”—the likely progression from order to disorder. We cannot reverse this arrow any more than we can erase all our wrinkles or restore a shattered teacup to its original form.

Or can we?

An international team of scientists led by the U.S. Department of Energy’s (DOE) Argonne National Laboratory explored this question in a first-of-its-kind experiment, managing to return a computer briefly to the past. The results, published March 13 in the journal Scientific Reports, suggest new paths for exploring the backward flow of time in . They also open new possibilities for quantum computer program testing and .

Jan 19, 2024

Scientists created a ‘giant quantum vortex’ that mimics a black hole

Posted by in categories: cosmology, quantum physics

Black holes can be difficult to study, so researchers have made a powerful quantum vortex in a tank of superfluid helium that acts as a simulation of a black hole.

By Leah Crane

Jan 19, 2024

Guest Post: The Unexaggerated Magic of Quantum

Posted by in categories: computing, quantum physics

Shai Phillips conduct an audit of broad industry-internal accusations of exaggeration in quantum computing and associated fields.

Jan 19, 2024

Leave no stone unturned in search for an explanation of consciousness

Posted by in categories: neuroscience, quantum physics

A solid theory of human consciousness eludes us, which is why seemingly fringe ideas such as those that rely on quantum effects in the brain are still worth pursuing.

Jan 19, 2024

The quantum equation suggests that the Big Bang never happened and that the universe has no beginning

Posted by in categories: cosmology, information science, quantum physics

The cosmos may have existed forever, according to a revolutionary model that extends Einstein’s theory of general relativity using quantum correction terms. By taking into consideration dark matter and energy, the model can concurrently address a number of concerns.

Jan 19, 2024

Protons reveal universal phenomenon of maximal entanglement

Posted by in categories: particle physics, quantum physics

Eighteen months ago, it was shown that different parts of the interior of the proton must be maximally quantum entangled with each other. This result, achieved with the participation of Prof. Krzysztof Kutak from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow and Prof. Martin Hentschinski from the Universidad de las Americas Puebla in Mexico, was a consequence of considerations and observations of collisions of high-energy photons with quarks and gluons in protons and supported the hypothesis presented a few years earlier by professors Dimitri Kharzeev and Eugene Levin.

Now, in a paper published in the journal Physical Review Letters, an international team of physicists has been presented a complementary analysis of entanglement for collisions between photons and protons in which secondary particles (hadrons) are produced by a process called diffractive deep inelastic scattering. The main question was: does entanglement also occur among quarks and gluons in these cases, and if so, is it also maximal?

Putting it in simple terms, physicists speak of entanglement between various quantum objects when the values of some feature of these objects are related. Quantum entanglement is not observed in the classical world, but its essence is easily explained by the toss of two coins. Each coin has two sides, and when it falls, it can take one of two mutually exclusive values (heads or tails) with the same probability.