Toggle light / dark theme

A research team led by Academician Du Jiangfeng and Professor Rong Xing from the University of Science and Technology of China (USTC), part of the Chinese Academy of Sciences (CAS), in collaboration with Professor Jiao Man from Zhejiang University, has used solid-state spin quantum sensors to examine exotic spin-spin-velocity-dependent interactions (SSIVDs) at short force ranges. Their study reports new experimental findings concerning interactions between electron spins and has been published in Physical Review Letters.

The Standard Model is a very successful theoretical framework in particle physics, describing fundamental particles and four basic interactions. However, the Standard Model still cannot explain some important observational facts in current cosmology, such as dark matter and dark energy.

Some theories suggest that new particles can act as propagators, transmitting new interactions between Standard Model particles. At present, there is a lack of experimental research on new interactions related to velocity between spins, especially in the relatively small range of force distance, where experimental verification is almost non-existent.

Scientists have utilized a quantum annealer to simulate quantum materials effectively, marking a crucial development in applying quantum computing in material science and enhancing quantum memory device performance.

Physicists have long been pursuing the idea of simulating quantum particles with a computer that is itself made up of quantum particles. This is exactly what scientists at Forschungszentrum Jülich have done together with colleagues from Slovenia. They used a quantum annealer to model a real-life quantum material and showed that the quantum annealer can directly mirror the microscopic interactions of electrons in the material. The result is a significant advancement in the field, showcasing the practical applicability of quantum computing in solving complex material science problems. Furthermore, the researchers discovered factors that can improve the durability and energy efficiency of quantum memory devices.

Richard Feynman’s Legacy in Quantum Computing.

MIT physicists have developed a new form of graphene, creating a five-lane electron superhighway that allows for ultra-efficient electron movement without energy loss.

This breakthrough in rhombohedral pentalayer graphene could transform low-power electronic devices and operates via the quantum anomalous Hall effect at zero magnetic field.

MIT physicists and their collaborators have created a five-lane superhighway for electrons that could allow ultra-efficient electronics and more.

Quantum sensing can outperform classical sensing by placing the sensor in an initial state that optimally measures the target. However, choosing this optimal state requires having some preknowledge, such as knowing the orientation of a magnetic field in order to measure its strength. A new experiment overcomes this limitation using two entangled quantum bits (qubits), which are manipulated in a way that is equivalent to a qubit traveling back in time [1]. Through this “time travel,” the qubits can be placed in an optimal state without any preknowledge.

“Our work addresses a specific kind of problem that plagues many sensing setups: you have to know which direction to point the sensor,” explains Kater Murch from Washington University in St. Louis. When measuring a magnetic field with a spin qubit, for example, the spin’s rotation will return information about the field strength only if you point it in the optimal direction. Point it in a nonoptimal direction and you’ll get zero information about the field, wasting the measurement.

Murch and his colleagues have devised a protocol in which the probe qubit is entangled with a second qubit, called the ancilla. Following previous work, they show that the entanglement is mathematically equivalent to the ancilla traveling back in time to place the probe in an optimal state [2]. They further show that measuring the ancilla and the probe in a particular sequence can recover information about the field strength in all cases—so no measurement data are wasted as they can be in other protocols. The researchers foresee using this entanglement scheme in situations where a field—or another observable—is changing over time.

A new quantum-system-on-chip enables the efficient control of a large array of qubits, advancing toward practical quantum computing.

Researchers at MIT and MITRE have developed a scalable, modular quantum hardware platform, incorporating thousands of qubits on a single chip, promising enhanced control and scalability. Utilizing diamond color centers, this new architecture supports extensive quantum communication networks and introduces an innovative lock-and-release fabrication process to efficiently integrate these qubits with existing semiconductor technologies.

Quantum Computing Potential

Imagine being able to quickly solve extremely complex problems that might take the world’s most powerful supercomputer decades to crack. This is the promise of quantum computers.

Nice!


Researchers at UC Berkeley have enhanced the precision of gravity experiments using an atom interferometer combined with an optical lattice, significantly extending the time atoms can be held in free fall. Despite not yet finding deviations from Newton’s gravity, these advancements could potentially reveal new quantum aspects of gravity and test theories about exotic particles like chameleons or symmetrons.

Twenty-six years ago physicists discovered dark energy — a mysterious force pushing the universe apart at an ever-increasing rate. Ever since, scientists have been searching for a new and exotic particle causing the expansion.

Pushing the boundaries of this search, University of California, Berkeley physicists have now built the most precise experiment yet to look for minor deviations from the accepted theory of gravity that could be evidence for such a particle, which theorists have dubbed a chameleon or symmetron.

Stanford’s new tiny, cheap laser:


Researchers have achieved a potentially groundbreaking innovation in laser technology by developing a titanium-sapphire (Ti: sapphire) laser on a chip. This new prototype is dramatically smaller, more efficient, and less expensive than its predecessors, marking a significant leap forward with a technology that has broad applications in industry, medicine, and beyond.

Ti: sapphire lasers are known for their unmatched performance in quantum optics, spectroscopy, and neuroscience due to their wide gain bandwidth and ultrafast light pulses. However, their bulky size and high cost have limited their widespread adoption. Traditional Ti: sapphire lasers occupy cubic feet in volume and can cost hundreds of thousands of dollars, in addition to requiring high-powered lasers costing $30,000 each to feed it the energy it needs to operate.

For the last seven decades, astrophysicists have theorized the existence of “kugelblitze,” black holes caused by extremely high concentrations of light.

These special black holes, they speculated, might be linked to astronomical phenomena such as , and have even been suggested as the power source of hypothetical spaceship engines in the far future.

However, new research by a team of researchers at the University of Waterloo and Universidad Complutense de Madrid demonstrates that kugelblitze are impossible in our current universe. Their research, titled “No black holes from ,” is published on the arXiv preprint server and is forthcoming in Physical Review Letters.

Philosopher Wilfrid Sellars had a term for the world as it appears, the “manifest image.” This is the world as we perceive it. In it, an apple is an apple, something red or green with a certain shape, a range of sizes, a thing that we can eat, or throw.

The manifest image can be contrasted with the scientific image of the world. Where the manifest image has colors, the scientific one has electromagnetic radiation of certain wavelengths. Where the manifest image has solid objects, like apples, the scientific image has mostly empty space, with clusters of elementary particles, held together in configurations due to a small number of fundamental interactions.

The scientific image is often radically different from the manifest image, although how different it is depends on what level of organization is being examined. For many purposes, including scientific ones, the manifest image, which is itself a predictive theory of the world at a certain level or organization, works just fine. For example, an ethologist, someone who studies animal behavior, can generally do so without having to concern themselves about quantum fields and their interactions.

Physicists at TU Graz have determined that certain molecules can be stimulated by pulses of infrared light to generate small magnetic fields. If experimental trials are also successful, this technique could potentially be applied in quantum computer circuits.

When molecules absorb infrared light, they start to vibrate as they receive energy. Andreas Hauser from the Institute of Experimental Physics at Graz University of Technology (TU Graz) used this well-understood process as a basis for exploring whether these vibrations could be harnessed to produce magnetic fields. Since atomic nuclei carry a positive charge, the movement of these charged particles results in the creation of a magnetic field.

Using the example of metal phthalocyanines – ring-shaped, planar dye molecules – Andreas Hauser and his team have now calculated that, due to their high symmetry, these molecules actually generate tiny magnetic fields in the nanometre range when infrared pulses act on them.