Toggle light / dark theme

Scalable way to generate and control sound in silicon photonic chips

Researchers at the University of Twente have solved a long-standing problem: trapping optically-generated sound waves in a standard silicon photonic chip. This discovery, published as a featured article in APL Photonics, opens new possibilities for radio technology, quantum communication, and optical computing.

Light travels extremely fast, while sound waves move much more slowly. By manipulating the interaction between light and sound—a physical phenomenon known as stimulated Brillouin scattering (SBS)—researchers can find new ways to store and filter information in a compact chip.

This is useful in applications such as ultra-fast radio communication and quantum technology. But doing this in silicon photonic chips, one of the most important integrated photonics technologies today, was a major challenge.

Breakthrough in High-Performance Fractal Nanowire Photon Detectors

“ tabindex=”0” quantum computing and secure communications. Scientists have optimized materials and processes, making these detectors more efficient than ever.

Revolutionizing Electronics with Photon Detection

Light detection plays a crucial role in modern technology, from high-speed communication to quantum computing and sensing. At the heart of these systems are photon detectors, which identify and measure individual light particles (photons). One highly effective type is the superconducting nanowire single-photon detector (SNSPD). These detectors use ultra-thin superconducting wires that instantly switch from a superconducting state to a resistive state when struck by a photon, enabling extremely fast detection.

Researchers spin ‘wheel of fortune’ to find a fundamental proof of quantum mechanics

Researchers from the National University of Singapore (NUS) and University of New South Wales (UNSW) Sydney have proven that a spinning atomic nucleus really is fundamentally a quantum resource. The teams were led respectively by Professor Valerio Scarani, from NUS Department of Physics, and Scientia Professor Andrea Morello from UNSW Engineering. The paper was published in the journal Newton on 14 February 2025.

It has long been inferred that tiny particles such as electrons or protons are indeed quantum due to the way they get deflected in a magnetic field. However, when left to spin freely, they appear to behave in exactly the same way as a classical spinning item, such as a Wheel of Fortune turning on its axis. For more than half a century, experts in spin resonance have taken this fact as a universal truth.

For the same reason, a technician or a doctor operating a (MRI) machine at the hospital never needed to understand quantum mechanics—the spinning of the protons inside the patient’s body produces the same kind of magnetic field that would be created by attaching a fridge magnet to a spinning wheel.

Atomic mirrors made of light promise better, sharper quantum sensors

Researchers in Germany have developed a special technique that will allow better control over atomic reflections in quantum sensors. This new approach uses carefully engineered light pulses as atomic mirrors to cut noise and sharpen quantum measurements.

There’s a big difference between regular and quantum sensors. The former relies on classical physics to measure properties like temperature, pressure, or motion. However, their measurements are affected by factors like thermal noise, material quality, and environmental disturbances.

Changhong, Other Chinese TV Makers Link TV Sets to DeepSeek Chatbot

Devices that leverage quantum mechanics effects, broadly referred to as quantum technologies, could help to tackle some real-world problems faster and more efficiently. In recent years, physicists and engineers have introduced various promising quantum technologies, including so-called quantum sensors.

Networks of quantum sensors could theoretically be used to measure specific parameters with remarkable precision. These networks leverage a quantum phenomenon known as entanglement, which entails a sustained connection between particles, which allows them to instantly share information with each other, even at a distance.

While quantum sensor networks (QSNs) could have various advantageous real-world applications, their effective deployment also relies on the ability to ensure that the information shared between sensors remains private and is not accessible to malicious third parties.

How Quantum Mechanics Powers the Near-Perfect Efficiency of Photosynthesis

This process, which cannot be understood satisfactorily by classical physics alone, occurs constantly in green plants and other photosynthetic organisms, such as photosynthetic bacteria. However, the exact mechanisms have still not been fully elucidated. Hauer and first author Erika Keil see their study as an important new basis in the effort to clarify how chlorophyll, the pigment in leaf green, works.

Applying these findings in the design of artificial photosynthesis units could help to utilize solar energy with unprecedented efficiency for electricity generation or photochemistry.