Menu

Blog

Archive for the ‘quantum physics’ category: Page 102

Feb 23, 2024

Harnessing the Power of Neutrality: Comparing Neutral-Atom Quantum Computing With Other Modalities

Posted by in categories: computing, particle physics, quantum physics

How Does The Neutral Atom Approach Compare

The neutral atom approach is a well-known and extensively investigated approach to quantum computing. The approach offers numerous advantages, especially in terms of scalability, expense, error mitigation, error correction, coherence, and simplicity.

Neutral atom quantum computing utilizes individual atoms, typically alkali atoms like rubidium or cesium, suspended and isolated in a vacuum and manipulated using precisely targeted laser beams. These atoms are not ionized, meaning they retain all their electrons and do not carry an electric charge, which distinguishes them from trapped ion approaches. The quantum states of these neutral atoms, such as their energy levels or the orientation of their spins, serve as the basis for qubits. By employing optical tweezers—focused laser beams that trap and hold the atoms in place—arrays of atoms can be arranged in customizable patterns, allowing for the encoding and manipulation of quantum information.

Feb 23, 2024

‘Quantum gravity’ could help unite quantum mechanics with general relativity at last

Posted by in categories: cosmology, particle physics, quantum physics

One of the primary reasons for this dilemma is that, while three of the universe’s four fundamental forces — electromagnetism, the strong nuclear force and the weak nuclear force — have quantum descriptions, there is no quantum theory of the fourth: Gravity.

Now, however, an international team has made headway in addressing this imbalance by successfully detecting a weak gravitational pull on a tiny particle using a new technique. The researchers believe this could be the first tentative step on a path that leads to a theory of “quantum gravity.”

“For a century, scientists have tried and failed to understand how gravity and quantum mechanics work together,” Tim Fuchs, team member and a scientist at the University of Southampton, said in a statement. “By understanding quantum gravity, we could solve some of the mysteries of our universe — like how it began, what happens inside black holes, or uniting all forces into one big theory.”

Feb 23, 2024

Ask Ethan: Is it possible that gravity isn’t quantum?

Posted by in category: quantum physics

For generations, physicists have been searching for a quantum theory of gravity. But what if gravity isn’t actually quantum at all?

Feb 23, 2024

Why string theory has been unfairly maligned

Posted by in categories: particle physics, quantum physics

String theory is widely considered beyond empirical investigation. But we could conceivably test it thanks to ancient particles called moduli, which might appear in astronomical observations, says theorist Joseph Conlon.

By Thomas Lewton

Feb 23, 2024

Scientists closer to solving mysteries of universe after measuring gravity in quantum world

Posted by in category: quantum physics

Scientists are a step closer to unravelling the mysterious forces of the universe after working out how to measure gravity on a microscopic level.

Experts have never fully understood how the force which was discovered by Isaac Newton works in the tiny quantum world.

Even Einstein was baffled by quantum gravity and, in his theory of general relativity, said there is no realistic experiment which could show a quantum version of gravity.

Feb 23, 2024

Physicists Say Magnets Offer Room Temperature Quantum Computing

Posted by in categories: computing, quantum physics

The Quantum Insider (TQI) is the leading online resource dedicated exclusively to Quantum Computing.

Feb 23, 2024

Never-Repeating Tiles Can Safeguard Quantum Information

Posted by in category: quantum physics

Two researchers have proved that Penrose tilings, famous patterns that never repeat, are mathematically equivalent to a kind of quantum error correction.

Feb 23, 2024

Surface Acoustic Wave Cavity Optomechanics with Atomically Thin $h$-BN and mathrmWSe_2$ Single-Photon Emitters

Posted by in categories: materials, quantum physics

In pursuing quantum networking technologies, single-photon emitters in acoustic cavities are a promising pathway that enables the conversion and transfer of quantum information across multiple platforms. The recent discovery of single-photon emitters within two-dimensional (2D) materials, such as WSe and hexagonal boron nitride (h-BN), opens new avenues in exploring such quantum optomechanical phenomena in lower dimensional systems. In this work, we demonstrate the integration of 2D-based single-photon emitters with surface acoustic wave optomechanical cavities and illustrate their potential for radio-frequency electronic control of quantum light emission.

Using simple exfoliation techniques, WSe and h-BN layers are transferred onto surface acoustic wave cavities patterned on lithium niobate—a highly piezoelectric host material. Using electro-optical measurements, we confirm high-quality resonators and cavity-phonon modes that couple to the 2D quantum emitters. Remarkably, the interaction between the 2D emitters and acoustic waves is exceptionally strong owing to the ultrathin nature of the 2D materials and their proximity to the surface waves, verified through quantum spectroscopy measurements. In addition to the radio-frequency acoustic modulation of the emitters in these materials, new physics emerges from the emitter-phonon coupling that leads to new mechanisms for high-speed manipulation of quantum emitters, opening avenues for the generation of entangled-photon pairs.

These advancements set the stage for the exploration of cavity optomechanics with 2D materials. In future experiments, higher frequency resonators will enable studies of the interplay and dynamics between single photons and phonons deep in the quantum regime, a key technology for quantum networking.

Feb 23, 2024

The Dual-Laser Revolution: A New Design for Quantum Computers

Posted by in categories: computing, encryption, finance, quantum physics

Creating a quantum computer powerful enough to tackle problems we cannot solve with current computers remains a big challenge for quantum physicists. A well-functioning quantum simulator – a specific type of quantum computer – could lead to new discoveries about how the world works at the smallest scales. Quantum scientist Natalia Chepiga from Delft University of Technology has developed a guide on how to upgrade these machines so that they can simulate even more complex quantum systems. The study is now published in Physical Review Letters.

“Creating useful quantum computers and quantum simulators is one of the most important and debated topics in quantum science today, with the potential to revolutionize society,” says researcher Natalia Chepiga. Quantum simulators are a type of quantum computer, Chepiga explains: “Quantum simulators are meant to address open problems of quantum physics to further push our understanding of nature. Quantum computers will have wide applications in various areas of social life, for example in finances, encryption, and data storage.”

Steering Wheel

Feb 23, 2024

Quantum Breakthrough in High-Temperature Superconductivity

Posted by in categories: particle physics, quantum physics

An international team of scientists has made a new discovery that may help to unlock the microscopic mystery of high-temperature superconductivity and address the world’s energy problems.

In a paper published in the journal Nature, Swinburne University of Technology’s Associate Professor Hui Hu collaborated with researchers at the University of Science and Technology of China (USTC) in a new experimental observation quantifying the pseudogap pairing in a strongly attractive interacting cloud of fermionic lithium atoms.