Menu

Blog

Archive for the ‘physics’ category: Page 163

Jul 2, 2021

Hawking’s Black Hole Theorem Confirmed Observationally for the First Time

Posted by in categories: cosmology, physics

Study offers evidence, based on gravitational waves, to show that the total area of a black hole’s event horizon can never decrease.

There are certain rules that even the most extreme objects in the universe must obey. A central law for black holes predicts that the area of their event horizons — the boundary beyond which nothing can ever escape — should never shrink. This law is Hawking’s area theorem, named after physicist Stephen Hawking, who derived the theorem in 1971.

Continue reading “Hawking’s Black Hole Theorem Confirmed Observationally for the First Time” »

Jul 2, 2021

Physicists observationally confirm Hawking’s black hole theorem for the first time

Posted by in categories: cosmology, physics

There are certain rules that even the most extreme objects in the universe must obey. A central law for black holes predicts that the area of their event horizons — the boundary beyond which nothing can ever escape — should never shrink. This law is Hawking’s area theorem, named after physicist Stephen Hawking, who derived the theorem in 1971.

Fifty years later, physicists at MIT and elsewhere have now confirmed Hawking’s area theorem for the first time, using observations of gravitational waves. Their results appear today in Physical Review Letters.

Jul 1, 2021

Physics breakthrough allows Chinese to build the most powerful laser

Posted by in categories: innovation, physics

Though the laser beam eventually would be fired up in extremely short pulses – with no risk of a blackout on Earth – experts believe it would tear apart space-time for a brief moment to allow scientists to glimpse new physical phenomena that for now only exist in theories.


Technological leap would allow the firing of a laser 10000 times more powerful than all the electricity grids in the world combined.

Jul 1, 2021

Throwing an “Axion Bomb” Into a Black Hole Could Break a Fundamental Law of Physics

Posted by in categories: cosmology, physics

New research shows how the fundamental law of conservation of charge could break down near a black hole.

Singularities, such as those at the centre of black holes, where density becomes infinite, are often said to be places where physics ‘breaks down’. However, this doesn’t mean that ‘anything’ could happen, and physicists are interested in which laws could break down, and how.

Now, a research team from Imperial College London, the Cockcroft Institute and Lancaster University have proposed a way that singularities could violate the law of conservation of charge. Their theory is published in Annalen der Physik.

Jun 30, 2021

Black holes eat neutron stars for breakfast — and burp out gravitational waves

Posted by in categories: cosmology, physics

“In physics, we often say that exceptional discoveries require exceptionally strong evidence.”


Within the space of ten days, LIGO detected gravitational waves that prove black holes can form binaries with neutron stars.

Jun 29, 2021

A New Type of Cataclysmic Event in the Cosmos: Astrophysicists Detect First Black Hole-Neutron Star Mergers

Posted by in categories: cosmology, physics

Mix pair is “elusive missing piece of the family picture of compact object mergers.”

A long time ago, in two galaxies about 900 million light-years away, two black holes each gobbled up their neutron star companions, triggering gravitational waves that finally hit Earth in January 2020.

Discovered by an international team of astrophysicists including Northwestern University researchers, two events — detected just 10 days apart — mark the first-ever detection of a black hole merging with a neutron star. The findings will enable researchers to draw the first conclusions about the origins of these rare binary systems and how often they merge.

Jun 25, 2021

The first observation of the superscattering effect of metamaterials

Posted by in categories: materials, physics

Entering an invisible doorway to catch a train at King’s Cross station in London is a renowned fictional scene from the Harry Potter series. In recent decades, physicists have been trying to produce a similar effect by focusing their research efforts on illusion devices.

Illusion devices are devices that can change the optical properties of objects to match those of other virtual objects or make them apparently invisible, producing an . Two common types of illusion devices are super-scatterers and invisible gateways. The first are designed to scatter light and the second to bounce back light rays through a physical gateway.

From a theoretical standpoint, super-scatterers and invisible gateways have so far been primarily studied in the context of transformation optics and folded geometry transformations (i.e., the visual, illusory transformation of objects into other objects). Experimentally realizing these devices, however, requires the use of metamaterials with specific properties (e.g., a negative permittivity and permeability) that can be difficult to employ in fabrication processes.

Jun 24, 2021

The World Just Moved Even Closer to a Real, Working Warp Drive

Posted by in categories: physics, space travel

Scientists have given the all-clear.


Warp drive is having a moment. Just last week, scientists dropped a bombshell when they unveiled the first physical model for a warp drive, the holy grail of space travel that would allow us to bend the fabric of space and time to their will and overcome the vast distances separating humans from the stars. Now, another astrophysicist has delivered an equally exciting warp drive breakthrough.

Up until this point, scientists have slowly chipped away at the fantasy of faster-than-light (FTL) travel by relying on theories of bizarre physics and exotic matter. But in a new paper, Göttingen University’s Erik Lentz has created a theoretical design of a warp drive that’s actually grounded in conventional physics. Lentz’s theory overcomes the need for a source of exotic matter in previous designs by reimagining the shape of warped space.

Continue reading “The World Just Moved Even Closer to a Real, Working Warp Drive” »

Jun 24, 2021

Highly Chirped Laser Pulses Defy “Conventional Wisdom”

Posted by in category: physics

University of Rochester researchers describe first highly chirped pulses created by a using a spectral filter in a Kerr resonator.

The 2018 Nobel Prize in Physics was shared by researchers who pioneered a technique to create ultrashort, yet extremely high-energy laser pulses at the University of Rochester.

Now researchers at the University’s Institute of Optics have produced those same high-powered pulses—known as chirped pulses—in a way that works even with relatively low-quality, inexpensive equipment. The new work could pave the way for:

Jun 22, 2021

Astronomers saw the Same Supernova Three Times Thanks to Gravitational Lensing. And in Twenty Years They Think They’ll see it one More Time

Posted by in categories: cosmology, physics

It is hard for humans to wrap their heads around the fact that there are galaxies so far away that the light coming from them can be warped in a way that they actually experience a type of time delay. But that is exactly what is happening with extreme forms of gravitational lensing, such as those that give us the beautiful images of Einstein rings. In fact, the time dilation around some of these galaxies can be so extreme that the light from a single event, such as a supernova, can actually show up on Earth at dramatically different times. That is exactly what a team led by Dr. Steven Rodney at the University of South Carolina and Dr. Gabriel Brammer of the University of Copenhagen has found. Except three copies of this supernova have already appeared – and the team thinks it will show up again one more time, 20 years from now.

Finding such a supernova is important not just for its mind bending qualities – it also helps to settle an important debate in the cosmological community. The rate of expansion of the universe has outpaced the rate expected when calculated from the cosmic microwave background radiation. Most commonly, this cosmological conundrum is solved by invoking “dark energy” – a shadowy force that is supposedly responsible for increasing the acceleration rate. But scientists don’t actually know what dark energy is, and to figure it out they need a better model of the physics of the early universe.

One way to get that better model is to find an event that is actively being distorted through a gravitational lens. Importantly – the same event must show up at two separate, distinct times in order to provide input to a calculation about the ratio of the distance between the galaxy doing the lensing and the background galaxy that was the source of the event.