Menu

Blog

Archive for the ‘physics’ category: Page 14

Apr 13, 2024

Astrophysicists Neil deGrasse Tyson & Matt O’Dowd Share Favorite Discoveries

Posted by in categories: physics, space

Neil deGrasse Tyson and Matt O’Dowd discuss their favorite scientific discoveries in astrophysics and the universe, as well as their roles as science communicators and teachers Questions to inspire discussion What do Neil deGrasse Tyson and Matt O’Dowd discuss in the video? —They discuss their favorite scientific disco.

Apr 13, 2024

Fast radio bursts: Research introduces a novel approach to characterize their behavior

Posted by in categories: physics, space

Fast radio bursts (FRBs) represent the most intense radio explosions in the universe. Since the first discovery in 2007, FRBs have garnered significant attention, culminating in the 2023 Shaw Prize in Astronomy. With yet unknown origin, these extreme cosmic bursts are among the most enigmatic phenomena in astronomy as well as physics.

Apr 10, 2024

The proton engine Einstein predicted, created for the first time: challenges the laws of the universe and makes cars sustainable

Posted by in categories: nuclear energy, physics, space, sustainability

Do you know what they’ve discovered? This is the proton engine that Einstein predicted decades ago and that, for the first time, they’ve managed to materialize. The best part? It challenges even the laws of physics and the universe, and it’s going to decarbonize transportation.

Nuclear fusion has long been a sought-after but elusive goal for science. It involves joining atomic nuclei to release energy, the same process that occurs in the Sun and other stars. In fact, it’s a process similar to what we saw two weeks ago with the plasma engine.

Unlike nuclear fission used in current nuclear power plants—which, remember, we are highly critical of due to its lack of being an eco-friendly or renewable option—fusion offers the promise of a virtually inexhaustible and clean energy source.

Apr 10, 2024

Revolutionizing IoT Power: The Pyroelectrochemical Cell Solution

Posted by in categories: chemistry, energy, food, internet, physics

Can you wirelessly power wireless devices, thus improving and advancing the technology known an “Internet of Things” (IoT)? This is what a recent study published in Energy & Environmental Science hopes to address as a team of researchers from the University of Utah investigated how pyroelectrochemical cell (PECs) could be used to self-charge IoT devices through changes in immediate surrounding temperature, also known as ambient temperature. This study holds the potential to help a myriad of industries, including agriculture and machinery, by allowing IoT devices to charge without the need for electrical outlets.

“We’re talking very low levels of energy harvesting, but the ability to have sensors that can be distributed and not need to be recharged in the field is the main advantage,” said Dr. Roseanne Warren, who is an associate professor in the Mechanical Engineering Department at the University of Utah and a co-author on the study. “We explored the basic physics of it and found that it could generate a charge with an increase in temperature or a decrease in temperature.”

Apr 10, 2024

5,000 Tiny Robots Unveil Secrets Of Universe’s Dark Energy

Posted by in categories: cosmology, physics, robotics/AI

In a revolutionary scientific endeavor, researchers are using 5,000 miniature robots perched atop a mountaintop telescope to peer an astonishing 11 billion years into the past. This cutting-edge instrument, known as the Dark Energy Spectroscopic Instrument (DESI), is capturing light from distant objects in space, allowing scientists from the Lawrence Berkeley National Laboratory to map our cosmos as it was in its infancy and trace its evolution to the present day.

Why is this so important? Understanding how our universe has evolved is intrinsically linked to predicting its ultimate fate and unraveling one of the biggest mysteries in physics: dark energy. This enigmatic force is causing our universe to expand at an ever-increasing rate, and DESI is providing us with unprecedented insights into its effects over the past 11 billion years.

Continue reading “5,000 Tiny Robots Unveil Secrets Of Universe’s Dark Energy” »

Apr 10, 2024

Rigor with machine learning from field theory to the Poincaré conjecture

Posted by in categories: mathematics, physics, robotics/AI

Machine learning techniques may appear ill-suited for application in fields that prioritize rigor and deep understanding; however, they have recently found unexpected uses in theoretical physics and pure mathematics. In this Perspective, Gukov, Halverson and Ruehle have discussed rigorous applications of machine learning to theoretical physics and pure mathematics.

Apr 9, 2024

Unlocking the Secrets of Eternal Data With Silicon Carbide

Posted by in categories: computing, internet, physics

Team presents new path to long-term data storage based on atomic-scale defects.

With the development of the internet, social media, and cloud computing, the amount of data created worldwide on a daily basis is skyrocketing. This calls for new technologies that could provide higher storage densities combined with secure long-term data archiving far beyond the capabilities of traditional data storage devices. An international research team led by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) now proposes a new concept of long-term data storage based on atomic-scale defects in silicon carbide, a semiconducting material. These defects are created by a focused ion beam, providing high spatial resolution, fast writing speed, and low energy for storing a single bit, as the team reports in the journal Advanced Functional Materials.

Latest estimates assume around 330 million terabytes of new data created each day, with 90 percent of the world’s data generated in the last two years alone. If the sheer numbers already suggest the need of advanced data storage technologies, it is by no means the only problem associated to this development. “The limited storage time of current storage media requires data migration within several years to avoid any data loss. Besides of being trapped in perpetual data migration procedures, this substantially increases the energy consumption, because a significant amount of energy is consumed in the process,” says Dr. Georgy Astakhov from the Institute of Ion Beam Physics and Materials Research at HZDR.

Apr 9, 2024

Gravitational waves reveal “mystery object” merging with a neutron star

Posted by in categories: physics, space

The so-called “mass gap” might be less empty than physicists previously thought.

Apr 8, 2024

Exploring the Black Hole Population with an Open Mind

Posted by in categories: cosmology, physics

A new model describes the population of black hole binaries without assumptions on the shape of their distribution—a capability that could boost the discovery potential of gravitational-wave observations.

Since the first groundbreaking observation of gravitational waves from a black hole merger [1], a worldwide network of observatories–LIGO, Virgo, and KAGRA—has discovered nearly a hundred mergers involving black holes and neutron stars (Fig. 1). The nature of this population of compact objects has implications for nearly every aspect of astrophysics and cosmology. However, understanding how gravitational-wave sources fit into our astrophysical theories has proved challenging. Many of the discoveries have confirmed our expectations, but some—such as those of asymmetric black hole binaries or of unexpectedly massive black holes—defy them.

Apr 8, 2024

Revolutionizing Photonics: Researchers Achieve Unprecedented Upconversion Efficiency

Posted by in categories: energy, nanotechnology, physics

Scientists at the National University of Singapore (NUS) have introduced a groundbreaking concept known as “supercritical coupling,” which significantly boosts the efficiency of photon upconversion. This innovation not only overturns existing paradigms but also opens a new direction in the control of light emission.

Photon upconversion, the process of converting low-energy photons into higher-energy ones, is a crucial technique with broad applications, ranging from super-resolution imaging to advanced photonic devices. Despite considerable progress, the quest for efficient photon upconversion has faced challenges due to inherent limitations in the irradiance of lanthanide-doped nanoparticles and the critical coupling conditions of optical resonances.

The concept of “supercritical coupling” plays a pivotal role in addressing these challenges. This fundamentally new approach, proposed by a research team led by Professor LIU Xiaogang from the NUS Department of Chemistry and his collaborator, Dr Gianluigi ZITO from the National Research Council of Italy, leverages on the physics of “bound states in the continuum” (BICs). BICs are phenomena that enable light to be trapped in open structures with theoretically infinite lifetimes, surpassing the limits of critical coupling. These phenomena are different from the usual behavior of light.

Page 14 of 297First1112131415161718Last