Toggle light / dark theme

Physicists generate hybrid spin-sound waves, expanding options for 6G implementation

Acoustic frequency filters, which convert electrical signals into miniaturized sound waves, separate the different frequency bands for mobile communications, Wi-Fi, and GPS in smartphones. Physicists at RPTU have now shown that such miniaturized sound waves can couple strongly with spin waves in yttrium iron garnet. This results in novel hybrid spin-sound waves in the gigahertz frequency range.

The use of such nanoscale hybrid spin-sound waves provides a pathway for agile frequency filters for the upcoming 6G mobile communications generation. The fundamental study by the RPTU researchers has been published in the journal Nature Communications.

Surface acoustic waves (SAWs) are ubiquitous. They unleash destructive power in the form of earthquake waves but are also at the heart of miniaturized frequency filters that are used billions of times for GHz-frequency mobile communication in smartphones.

Exceptional points alter the order of lasing modes

Exceptional points (EPs) are non-Hermitian singularities where two or more eigenstates coalesce, resulting in the eigenspace collapsing in dimensionality. Over the past decade, researchers have uncovered a wealth of exotic phenomena near EPs.

In laser physics, for example, EPs have been linked to pump-induced laser termination, loss-induced lasing, and the design of quasi-parity-time-symmetric laser systems that boost the output power of large-area lasers while preserving single-mode operation.

Beyond Einstein: Could Our Universe Have Seven Hidden Dimensions?

The geometry of space, the setting in which physical laws operate, may hold clues to some of the biggest unanswered questions in fundamental physics. The underlying structure of spacetime itself could be the foundation for every interaction observed in nature. A study published in Nuclear Physics

Physicists Observe a Nuclear “Memory” Thought Impossible

UT researchers have made rare measurements of exotic nuclear decay that reshape how scientists think heavy elements form in extreme cosmic events.

You can’t have gold without the decay of an atomic nucleus, yet the details behind that transformation have long been difficult to confirm. Researchers in nuclear physics at UT have now reported three key findings in a single study that clarify important parts of this process. Their work offers new guidance for developing models that explain how stars create heavy elements and may improve predictions about the behavior of exotic, short-lived nuclei found across the universe.

The Physics of Bling.

Consciousness as the foundation: New theory addresses nature of reality

Consciousness is fundamental; only thereafter do time, space and matter arise. This is the starting point for a new theoretical model of the nature of reality, presented by Maria Strømme, Professor of Materials Science at Uppsala University, in AIP Advances. The article has been selected as the best paper of the issue and featured on the cover.

Strømme, who normally conducts research in nanotechnology, here takes a major leap from the smallest scales to the very largest—and proposes an entirely new theory of the origin of the universe. The article presents a framework in which consciousness is not viewed as a byproduct of brain activity, but as a fundamental field underlying everything we experience—matter, space, time, and life itself.

In defence of Stephen Wolfram

You like Stephen Wolfram, right?

I mean, if he’s to be believed, he has reinvented physics, not to mention philosophy.

How could you not like such a thinker?

Well… it turns out that there are plenty of people who don’t like Stephen Wolfram… or his physics… or his philosophy.

Here are four criticisms of Stephen Wolfram I regularly hear…

…and here’s why these criticisms, though they hint at uncomfortable truths, nonetheless miss the mark.

Breakthrough Simulation Maps Every Star in The Milky Way in Scientific First

The Milky Way contains more than 100 billion stars, each following its own evolutionary path through birth, life, and sometimes violent death.

For decades, astrophysicists have dreamed of creating a complete simulation of our galaxy, a digital twin that could test theories about how galaxies form and evolve. That dream has always crashed against an impossible computational wall.

Until now.

/* */