Toggle light / dark theme

GOLD that’s just two atoms thick has been created in a lab by British scientists.

The “world’s thinnest gold” is one million times thinner than a fingernail – and is so thin, it’s technically regarded as “two dimensional”.

The official measurement is 0.47 nanometres, made possible because the gold is made up of just two atoms sitting on top of each other.

Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle. They observed the electrons getting concentrated around the metal atoms within less than a femtosecond. This regrouping might influence important macroscopic properties of these compounds, such as electrical conductivity, magnetization or optical characteristics. The work therefore suggests a route to controlling these properties on extremely fast time scales.

The distribution of electrons in , which represent a large part of the periodic table of chemical elements, is responsible for many of their interesting properties used in applications. The magnetic properties of some of the members of this group of materials are, for example, exploited for data storage, whereas others exhibit excellent electrical conductivity. Transition metals also have a decisive role for novel materials with more exotic behaviour that results from strong interactions between the electrons. Such materials are promising candidates for a wide range of future applications.

In their experiment, whose results they report in a paper published today in Nature Physics, Mikhail Volkov and colleagues in the Ultrafast Laser Physics group of Prof. Ursula Keller exposed thin foils of the transition metals titanium and zirconium to short laser pulses. They observed the redistribution of the electrons by recording the resulting changes in optical properties of the metals in the extreme ultraviolet (XUV) domain. In order to be able to follow the induced changes with sufficient temporal resolution, XUV pulses with a duration of only few hundred attoseconds (10-18 s) were employed in the measurement. By comparing the experimental results with theoretical models, developed by the group of Prof. Angel Rubio at the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, the researchers established that the change unfolding in less than a femtosecond (10-15 s) is due to a modification of the electron localization in the vicinity of the metal atoms.

When you pop a tray of water into the freezer, you get ice cubes. Now, researchers from the University of Colorado Boulder and the University of Toronto have achieved a similar transition using clouds of ultracold atoms.

In a study that will appear August 2 in the journal Science Advances, the team discovered that it could nudge these to undergo transitions between “dynamical phases”—essentially, jumping between two states in which the behave in completely different ways.

“This happens abruptly, and it resembles the we see in systems like water becoming ice,” said study co-author Ana Maria Rey. “But unlike that tray of ice cubes in the freezer, these phases don’t exist in equilibrium. Instead, atoms are constantly shifting and evolving over time.”

The phenomenon known as “tunneling” is one of the best-known predictions of quantum physics, because it so dramatically confounds our classical intuition for how objects ought to behave. If you create a narrow region of space that a particle would have to have a relatively high energy to enter, classical reasoning tells us that low-energy particles heading toward that region should reflect off the boundary with 100% probability. Instead, there is a tiny chance of finding those particles on the far side of the region, with no loss of energy. It’s as if they simply evaded the “barrier” region by making a “tunnel” through it.

It’s very important to note that this phenomenon is absolutely and unquestionably real, demonstrated in countless ways. The most dramatic of these is sunlight— the Sun wouldn’t be able to fuse hydrogen into helium without quantum tunneling— but it’s also got more down-to-earth technological applications. Tunneling serves as the basis for Scanning Tunneling Microscopy, which uses the tunneling of electrons across a tiny gap between a sharp tip and a surface to produce maps of that surface that can readily resolve single atoms. It’s also essential for the Josephson effect, which is the basis of superconducting detectors of magnetic fields and some of the superconducting systems proposed for quantum computing.

So, there is absolutely no debate among physicists about whether quantum tunneling is a thing that happens. Physicists get a bit twitchy without something to argue over, though, and you don’t have to dig into tunneling (heh) very far to find a disputed question, namely “How long does quantum tunneling take?”

O.o!


A team of scientists recently determined certain quantum particles can regenerate after they’ve decayed. This has grand implications for the future of humanity, quantum computing, and intergalactic graffiti.

Theoretical physicists from the Technical University of Munich and the Max Planck Institute conducted simulation experiments to determine that certain quasiparticles are essentially immortal. Per the second law of thermodynamics nothing lasts forever, but these quantum particle fields can reassemble themselves after decaying – just like the phoenix from Greek mythology.

A team of fusion researchers succeeded in proving that energetic ions with energy in mega electron volt (MeV) range are superiorly confined in a plasma for the first time in helical systems. This promises the alpha particle (helium ion) confinement required for realizing fusion energy in a helical reactor.

The deuterium-tritium reaction in a high-temperature plasma will be used in fusion reactors in the future. Alpha particles with 3.5 MeV energy are generated by the fusion reaction. The alpha particles transfer their energy to the plasma, and this alpha particle heating sustains the high-temperature plasma condition required for the fusion reaction. In order to realize such a plasma, which is called a burning plasma, the in the MeV range must be tightly confined in the plasma.

Numerical simulations predicted the favorable results of MeV ion in a plasma in helical systems that have the advantage of steady-state operation in comparison with tokamak systems. However, demonstration of MeV ion confinement by experiment had not been reported. Recently, the study was greatly advanced by an MeV ion confinement experiment performed in the deuterium operation of the Large Helical Device (LHD), which is owned by National Institute for Fusion Science (NIFS), National Institutes of Natural Sciences (NINS), in Japan. In deuterium plasmas, 1 MeV tritons (tritium ions) are created by deuteron-deuteron fusion reactions. The tritons have the similar behavior with generated in a future burning plasma.

By Will Knight

A super-powered neutrino generator could in theory be used to instantly destroy nuclear weapons anywhere on the planet, according to a team of Japanese scientists.

If it was ever built, a state could use the device to obliterate the nuclear arsenal of its enemy by firing a beam of neutrinos straight through the Earth. But the generator would need to be more than a hundred times more powerful than any existing particle accelerator and over 1000 kilometres wide.

Making a replicator from this could make something that could create almost anything :3.


The first type of molecule that ever formed in the universe has been detected in space for the first time, after decades of searching. Scientists discovered its signature in our own galaxy using the world’s largest airborne observatory, NASA’s Stratospheric Observatory for Infrared Astronomy, or SOFIA, as the aircraft flew high above the Earth’s surface and pointed its sensitive instruments out into the cosmos.

When the universe was still very young, only a few kinds of atoms existed. Scientists believe that around 100,000 years after the big bang, helium and hydrogen combined to make a molecule called helium hydride for the first time. Helium hydride should be present in some parts of the modern universe, but it has never been detected in space — until now.

Scientists at the University of Illinois have discovered a new way to make water, and without the pop. Not only can they make water from unlikely starting materials, such as alcohols, their work could also lead to better catalysts and less expensive fuel cells.

“We found that unconventional metal hydrides can be used for a chemical process called oxygen reduction, which is an essential part of the process of making water,” said Zachariah Heiden, a doctoral student and lead author of a paper accepted for publication in the Journal of the American Chemical Society, and posted on its Web site.

A water molecule (formally known as dihydrogen monoxide) is composed of two hydrogen atoms and one oxygen atom. But you can’t simply take two hydrogen atoms and stick them onto an oxygen atom. The actual reaction to make water is a bit more complicated: 2H2 + O2 = 2H2O + Energy.