Menu

Blog

Archive for the ‘particle physics’ category: Page 422

Jun 11, 2019

MINERνA

Posted by in category: particle physics

On March 14, 2012, MINERνA submitted a preprint demonstrating communication using neutrinos. Though not a part of the experiment’s physics program, this is the first reported instance of a message being transmitted by neutrinos. Scientists used ASCII code to represent the word “neutrino” as a series of 1s and 0s. Over a period of 6 minutes, this sequence was delivered by either the presence or absence of a neutrino pulse, over a distance of about a kilometer.


Underside of the front of the MINERνA neutrino detector in 2011. The names of experiment contributors are handwritten on the front of the detector. Main Injector Experiment for ƒË-A, or MINERνA, is a neutrino scattering experiment which uses the NuMI beamline at Fermilab. MINERνA seeks to measure low energy neutrino interactions both in support of neutrino oscillation experiments and also to study the strong dynamics of the nucleon and nucleus that affect these interactions.

Continue reading “MINERνA” »

Jun 11, 2019

Hypersonic matterwaves for ultrafast atomtronics

Posted by in categories: particle physics, quantum physics, transportation

Atomtronics manipulates atoms much in the way that electronics manipulates electrons. It carries the promise of highly compact quantum devices which can measure incredibly small forces or tiny rotations. Such devices might one day be used to monitor Earth’s status by sensing water levels in the desert or in the search for minerals and oil. They will also be used in navigation, when GPS fails on planes or ships due to malicious attacks or simply because it is not available, e.g. in the deep seas. They might also one day act as portable quantum simulators solving complex computational tasks.

Coherent atomtronics manipulates atoms in the form of matterwaves originating from Bose-Einstein condensates (a state of matter in which all the atoms lose their individual identity and become one single quantum state with all the atoms being everywhere in the condensate at the same time). The atoms in these matterwaves behave much more like waves rather than individual particles. These matterwaves can be brought to interfere and thus made to respond to the tiniest changes in their environment such as the difference in gravitational pull between light organic material and heavy iron ore. When compared to light, atoms can be 10 billion times more sensitive, e.g. to rotation or acceleration, when compared to the photons that make up light. This sensitivity depends on the measurement time and—just like Newton’s apple—atoms fall due to Earth’s gravity. This forces the most sensitive interferometers to be very tall, reaching 10 meters and in some cases even 100 meters.

Read more

Jun 10, 2019

Making a Real Lightsaber Using Rydberg Atoms and Photonic Molecules

Posted by in categories: particle physics, quantum physics, weapons

In this video I show you an awesome laser lightsaber and then I talk about lightsabers and the possibility of using photonic molecules to build a real lightsaber. This thing is awesome! If the force is with us (and some quantum mechanics) we will some day have a true lightsaber…These are very dangerous lasers. NOT A TOY. Will cause instant blindness:

Blue Laser Pointer Lightsaber kit: https://goo.gl/9JUWdp

Continue reading “Making a Real Lightsaber Using Rydberg Atoms and Photonic Molecules” »

Jun 9, 2019

Berkeley lab builds world record tabletop-size particle accelerator

Posted by in category: particle physics

Using a quadrillion watt laser, Berkeley lab researchers have produced a world-record 4.25 giga-electron volts energy acceleration using their tabletop-size laser-plasma particle accelerator.

Read more

Jun 9, 2019

Particle accelerator on a microchip

Posted by in categories: computing, particle physics

The Gordon and Betty Moore Foundation has awarded 13.5 million US dollars (12.6 million euros) to promote the development of a particle accelerator on a microchip. DESY and the University of Hamburg are among the partners involved in this international project, headed by Robert Byer of Stanford University (USA) and Peter Hommelhoff of the University of Erlangen-Nürnberg. Within five years, they hope to produce a working prototype of an “accelerator-on-a-chip”.

Read more

Jun 9, 2019

Researchers craft an LED just two atoms thick

Posted by in categories: computing, particle physics

It can produce or sense photons for optical interconnects within chips.

Read more

Jun 9, 2019

Heart of next-generation chip-scale atomic clock

Posted by in categories: computing, particle physics, satellites

Physicists at the National Institute of Standards and Technology (NIST) and partners have demonstrated an experimental, next-generation atomic clock — ticking at high “optical” frequencies — that is much smaller than usual, made of just three small chips plus supporting electronics and optics.

Described in Optica, the chip-scale clock is based on the vibrations, or “ticks,” of rubidium atoms confined in a tiny glass container, called a vapor cell, on a chip. Two frequency combs on chips act like gears to link the atoms’ high-frequency optical ticks to a lower, widely used microwave frequency that can be used in applications.

The chip-based heart of the new clock requires very little power (just 275 milliwatts) and, with additional technology advances, could potentially be made small enough to be handheld. Chip-scale optical clocks like this could eventually replace traditional oscillators in applications such as navigation systems and telecommunications networks and serve as backup clocks on satellites.

Read more

Jun 8, 2019

5 Intriguing Theories about Dark Matter

Posted by in categories: cosmology, particle physics

Dark matter is a hypothetical invisible mass, which is responsible for the force of gravity among galaxies and other celestial bodies. Although researchers don’t have any concrete information about this puzzling entity, they did come up with a number of intriguing theories about this enigmatic mass. Following is a list of 5 dark matter theories that are quite interesting.

WIMPs are hypothetical particles that are thought to constitute dark matter. These heavy, electromagnetically neutral subatomic particles are hypothesized to make up 22% of the entire universe. They are thought to be heavy and slow-moving because if the dark matter particles were light and fast, they would not have clumped together in the density fluctuations from which galaxies and clusters of galaxies are formed. The precise nature of these particles is currently unknown and they do not abide by the laws of the Standard Model of Particle Physics.

Axions are believed to be neutral, slow-moving particles that are a billion times lighter than electrons. They rarely interact with light and this behavior has urged scientists to believe that Axion could be a building block of the dark matter. An attempt to detect these particles was made in April 2018 by the physicists from the University of Washington. The main idea of this theory suggests that if axions are constantly dashing towards Earth, powerful magnets may be able to convert some of the axions into microwave photons, which are easier to detect. Their work is commonly known as the Axion Dark Matter Experiment (ADMX) and this theory has not enjoyed much success, since then.

Continue reading “5 Intriguing Theories about Dark Matter” »

Jun 7, 2019

New evidence from LHC shows pentaquark has a molecule-like structure

Posted by in category: particle physics

A team of researchers working on the LHCb collaboration has found evidence showing that a pentaquark they have observed has a molecule-like structure. In their paper published in the journal Physical Review Letters, the group describes the evidence and the structure of the pentaquark they observed.

Four years ago, a team working at the Large Hadron Collider (LHC) observed what is known as a pentaquark by smashing protons into each other. Its existence had been theorized, but it was not until the right technology was deployed at the LHC that researchers were able to observe it with a reasonable degree of confidence. It was subsequently found to be a particle made up of four and one antiquark. (Quarks are indivisible particles that make up neutrons and protons.)

In this new effort, the researchers have gained a better perspective on the actual organization of the pentaquark. They report that they have nine times as much data from observations as they had when the pentaquark was first observed, so they have high confidence in their findings. They report that the pentaquark was made up of a three-quark baryon and a quark-antiquark meson, and that they were bound together in a way reminiscent of a molecule.

Continue reading “New evidence from LHC shows pentaquark has a molecule-like structure” »

Jun 7, 2019

Modelling reveals new insight into the electrical conductivity of ionic liquids

Posted by in category: particle physics

A collaborative investigation has revealed new insight into how room temperature ionic liquids (RTILs) conduct electricity, which may have a great potential impact for the future of energy storage.

The research focuses on the debate surrounding the physical mechanism of the electrical of RTILs. Their charged positive and negative organic ions lead them to be good conductors, but the conductivity seems paradoxical. Their high conductivity arises from their of charged ions within the liquid, but this density should also mean that the positive and negative ions are close enough to neutralise one another, creating new, which cannot support an electrical current. The modelling attempts to identify how conductivity is maintained in RTILs in light of these contradictory factors.

The research involved an international group of researchers, including Professor Nikolai Brilliantov of the University of Leicester and led by Professor Alexei Kornyshev of Imperial College London and Professor Guang Feng of the Huazhong University of Science and Technology.

Continue reading “Modelling reveals new insight into the electrical conductivity of ionic liquids” »