Menu

Blog

Archive for the ‘particle physics’ category: Page 417

Jul 8, 2019

Simulation shows nuclear pasta 10 billion times harder to break than steel

Posted by in categories: computing, particle physics

A trio of researchers affiliated with several institutions in the U.S. and Canada has found evidence that suggests nuclear material beneath the surface of neutron stars may be the strongest material in the universe. In their paper published in the journal Physical Review Letters, M. E. Caplan, A. Schneider, and C. J. Horowitz describe their neutron star simulation and what it showed.

Prior research has shown that when reach a certain age, they explode and collapse into a mass of neutrons; hence the name star. And because they lose their neutrinos, become extremely densely packed. Prior research has also found evidence that suggests the surface of such stars is so dense that the material would be incredibly strong. In this new effort, the researchers report evidence suggesting that the material just below the surface is even stronger.

Astrophysicists have theorized that as a neutron star settles into its new configuration, densely packed neutrons are pushed and pulled in different ways, resulting in formation of various shapes below the . Many of the theorized shapes take on the names of pasta, because of the similarities. Some have been named gnocchi, for example, others spaghetti or lasagna. Caplan, Schneider and Horowitz wondered about the density of these formations—would they be denser and thus stronger even than material on the crust? To find out, they created some computer simulations.

Jul 8, 2019

Scientists Are Hunting For A Mirror Universe And Attempting To Open Portals Into It

Posted by in categories: cosmology, particle physics

Imagine a world where everything is exactly the same as this one but no one knows of its existence, even though it could be staring you right in the face. These are called mirror universes — a parallel world in a different time space. While this prospect may seem a bit fetched to many, Leah Broussard believes that these parallel universes are actually very real. In fact, she, along with her colleagues at Oak Ridge National Laboratory in Tennessee, is on the hunt for a mirror universe and plans on opening portals to them.

Broussard is attempting to open a portal to a parallel universe by, what she calls “oscillation” which would eventually lead her to mirror matter. To conduct these experiments during the upcoming summer, Broussard will send a beam of subatomic particles down a 50-foot tunnel, past a powerful magnet, and into an impenetrable wall.

So what’s the point of that? Well, if the setup is just right, some of those particles will transform into mirror-image versions of themselves, allowing them to tunnel right through the wall. If it works, this would be the first proof of a mirror universe. The whole experiment will only take around a day but analyzing the data will take many weeks afterward. Either way, it won’t be long before the results are published.

Jul 8, 2019

Quantum Particles Found Exhibiting Immortality Through “Infinite Decay And Rebirth”

Posted by in categories: computing, life extension, particle physics, quantum physics

https://youtube.com/watch?v=hyx6tBTk1p0

We know that the rule “nothing lasts forever” holds true for everything. But the world of quantum particles doesn’t always seem to follow the rules.

In the latest findings, scientists have observed that quasiparticles in quantum systems could be virtually immortal. These particles can regenerate themselves after they have decayed — and this can have a significant impact on the future of quantum computing and humanity itself.

Continue reading “Quantum Particles Found Exhibiting Immortality Through ‘Infinite Decay And Rebirth’” »

Jul 8, 2019

NASA’s New Space Engine Is Powered by Nuclear Fission

Posted by in categories: nuclear energy, particle physics, security, space travel

From returning to the Moon to establishing outposts on Mars, NASA has the need for more power than ever before. Could nuclear fission be the solution they’ve been searching for?

Watch more Focal Point! | https://bit.ly/2J9b9LC

Continue reading “NASA’s New Space Engine Is Powered by Nuclear Fission” »

Jul 8, 2019

These Odd ‘Quasiparticles’ Could Finally Unmask Dark Matter

Posted by in categories: cosmology, particle physics

About 80% of all the matter in the cosmos is of a form completely unknown to current physics. We call it dark matter, because as best we can tell it’s…dark. Experiments around the world are attempting to capture a stray dark matter particle in hopes of understanding it, but so far they have turned up empty.

Recently, a team of theorists has proposed a new way to hunt for dark matter using weird “particles” called magnons, a name I did not just make up. These tiny ripples could lure even a fleeting, lightweight dark matter particle out of hiding, those theorists say. [The 11 Biggest Unanswered Questions About Dark Matter]

We know all sorts of things about dark matter, with the notable exception of what it is.

Jul 7, 2019

Cosmic gamma-ray energy record shattered

Posted by in categories: particle physics, space

ASgamma experiment sheds light on how pulsars act as particle accelerators.

Jul 7, 2019

If You Thought Quantum Mechanics Was Weird, You Need to Check Out Entangled Time

Posted by in categories: particle physics, quantum physics

In the summer of 1935, the physicists Albert Einstein and Erwin Schrödinger engaged in a rich, multifaceted and sometimes fretful correspondence about the implications of the new theory of quantum mechanics.

The focus of their worry was what Schrödinger later dubbed entanglement: the inability to describe two quantum systems or particles independently, after they have interacted.

Until his death, Einstein remained convinced that entanglement showed how quantum mechanics was incomplete. Schrödinger thought that entanglement was the defining feature of the new physics, but this didn’t mean that he accepted it lightly.

Jul 6, 2019

Scientists Create Part-Atom, Part-Light Hybrid Particle

Posted by in category: particle physics

Photons normally do not interact with each other, but researchers found that they can get particles of light to interact with each other like matter does. They produced particles called Floquet polaritons.

Jul 5, 2019

Physicists Find a New Way to Make Hybrid ‘Particles’ That Are Part-Matter, Part-Light

Posted by in categories: particle physics, weapons

Photons — those fundamental particles of light — have a slew of interesting properties, including the fact they don’t tend to crash into one another. That hasn’t stopped physicists from trying, though.

University of Chicago physicists have now come up with a new, highly flexible way to make photons behave more like the particles that make up matter. It might not give us lightsabers, but making photons collide could still lead to some fantastic technologies.

The trick to getting particles of light — which have no mass — to acknowledge one another’s existence is to have them meet in the quiet confines of an atom, and combine their properties with those of an electron.

Jul 4, 2019

An Itty-Bitty Robot That Lifts Off Like a Sci-Fi Spaceship

Posted by in categories: particle physics, robotics/AI, space travel, sustainability

Credit where credit is due: Evolution has invented a galaxy of clever adaptations, from fish that swim up sea cucumber butts and eat their gonads, to parasites that mind-control their hosts in wildly complex ways. But it’s never dreamed up ion propulsion, a fantastical new way to power robots by accelerating ions instead of burning fuel or spinning rotors. The technology is in very early development, but it could lead to machines that fly like nothing that’s come before them.

You may have heard of ion propulsion in the context of spacecraft, but this application is a bit different. Most solar-powered ion spacecraft bombard xenon atoms with electrons, producing positively charged xenon ions that then rush toward a negatively charged grid, which accelerates the ions into space. The resulting thrust is piddling compared to traditional engines, and that’s OK—the spacecraft is floating through the vacuum of space, so the shower of ions accelerate the aircraft bit by bit.

You’ve read your last complimentary article this month. To read the full article, SUBSCRIBE NOW. If you’re already a subscriber, please sign in and and verify your subscription.